所属成套资源:2022年中考数学真题分类汇编
- 2022年中考数学真题汇编:动态问题(含解析) 试卷 21 次下载
- 2022年中考数学真题汇编:对称问题(含解析) 试卷 21 次下载
- 2022年中考数学真题分类汇编:圆类几何证明题(含答案) 试卷 25 次下载
- 2022年中考数学试题汇编:二次函数(选择题)(含解析) 试卷 23 次下载
- 2022年中考数学试题汇编:二次函数(填空题)(含解析) 试卷 20 次下载
2022年中考数学试题汇编:二次函数(解答题)(含解析)
展开
这是一份2022年中考数学试题汇编:二次函数(解答题)(含解析),共120页。
2022年中考数学试题汇编:二次函数(解答题)
1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
2.(2022•盘锦)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:
x(天)
1
2
3
…
x
每天的销售量(千克)
10
12
14
…
设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)
(1)将表格中的最后一列补充完整;
(2)求y关于x的函数关系式;
(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?
3.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本)
……
22
23
24
25
……
每天销售量(本)
……
80
78
76
74
……
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
4.(2022•贵阳)已知二次函数y=ax2+4ax+b.
(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.
5.(2022•营口)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.
(1)求抛物线和直线AB的解析式;
(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;
(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.
6.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
(1)求二次函数的表达式;
(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.
7.(2022•盘锦)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点(A在B的左侧),与y轴交于点C(0,9),点D在y轴正半轴上,OD=4,点P是线段OB上的一点,过点B作BE⊥DP,BE交DP的延长线于点E.
(1)求抛物线解析式;
(2)若=,求点P的坐标;
(3)点F为第一象限抛物线上一点,在(2)的条件下,当∠FPD=∠DPO时,求点F的坐标.
8.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.
(1)求抛物线的函数表达式及点D的坐标;
(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;
(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.
10.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
11.(2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:
每千克售价x(元)
……
20
22
24
……
日销售量y(千克)
……
66
60
54
……
(1)求y与x之间的函数关系式;
(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?
12.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
13.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为x=t.
(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;
(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.
14.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).
某运动员进行了两次训练.
(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:
水平距离x/m
0
2
5
8
11
14
竖直高度y/m
20.00
21.40
22.75
23.20
22.75
21.40
根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);
(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1 d2(填“>”“=”或“<”).
15.(2022•呼和浩特)如图,抛物线y=﹣x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,连接AC、BC.
(1)求抛物线的解析式及点A的坐标;
(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ∥y轴,分别交BC、x轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.
16.(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.
(1)求抛物线的解析式;
(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S2=S1时.求点P的横坐标;
(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.
17.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
18.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= ,实数k的取值范围是 ;
(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
19.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
20.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.
(1)求抛物线的解析式;
(2)当点D在第二象限且=时,求点D的坐标;
(3)当△ODF为直角三角形时,请直接写出点D的坐标.
21.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.
(1)求b,c的值;
(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.
①求x关于t的函数解析式;
②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
22.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
23.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求这条抛物线所对应的函数的表达式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
24.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.
(1)写出C2的解析式(用含a的式子表示)及顶点坐标;
(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.
①当MN=6a时,求点P的坐标;
②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.
25.(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;
(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;
(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.
26.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.
(1)求第14天小颖家草莓的日销售量;
(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;
(3)试比较第8天与第10天的销售金额哪天多?
27.(2022•大庆)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
(1)图中点P所表示的实际意义是 ,每增种1棵果树时,每棵果树平均产量减少 kg;
(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?
28.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.
29.(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.
(1)求此抛物线的解析式.
(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.
(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.
①求m的值.
②以PA为边作等腰直角三角形PAQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.
30.(2022•包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.
(1)求该抛物线的解析式;
(2)如图1,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;
(3)如图2,直线BM与y轴交于点H,是否存在点M,使得2OH﹣OG=7.若存在,求出点M的坐标;若不存在,请说明理由.
31.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
32.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
(1)求b的值;
(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.
33.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.
(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;
②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;
(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.
34.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.
(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;
(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?
35.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
36.(2022•湖北)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:
销售单价x(元/千克)
…
20
22.5
25
37.5
40
…
销售量y(千克)
…
30
27.5
25
12.5
10
…
(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;
(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).
①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;
②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.
37.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.
(1)求点B的坐标及直线AC的解析式;
(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;
(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
38.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36m2,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
39.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
40.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
41.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
42.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
43.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
44.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:
(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;
(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?
45.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
第x天
1
2
…
6
…
11
…
15
供应量y1(个)
150
150+m
…
150+5m
…
150+10m
…
150+14m
需求量y2(个)
220
229
…
245
…
220
…
164
(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
46.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
参考答案与试题解析
1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
【分析】(1)根据当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4,
(2)设李大爷每天所获利润是w元,由总利润=每千克利润×销量得w=[12﹣0.5(x﹣1)﹣(﹣.02x+8.4)]×10x=﹣3(x﹣)2+,利用二次函数性质可得李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.
【解答】解:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4,
答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4;
(2)设李大爷每天所获利润是w元,
由题意得:w=[12﹣0.5(x﹣1)﹣(﹣.02x+8.4)]×10x=﹣3x2+41x=﹣3(x﹣)2+,
∵﹣3<0,x为正整数,且|6﹣|>|7﹣|,
∴x=7时,w取最大值,最大值为﹣3×(7﹣)2+=140(元),
答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.
【点评】本题考查一次函数及二次函数的应用,解题的根据是理解题意,列出函数关系式,能利用二次函数性质解决问题.
2.(2022•盘锦)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:
x(天)
1
2
3
…
x
每天的销售量(千克)
10
12
14
…
2x+8
设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)
(1)将表格中的最后一列补充完整;
(2)求y关于x的函数关系式;
(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?
【分析】(1)设每天的销售量为z,则用待定系数法可求出每天的销售量与销售天数x的一次函数关系式,根据关系式填表即可;
(2)根据图象写出分段函数即可;
(3)根据函数关系列出x和w之间的关系式,利用二次函数的性质求最值即可.
【解答】解:(1)设每天的销量为z,
∵每天的销售量与销售天数x满足一次函数关系,
∴z=sx+t,
∵当x=1时,z=10,x=2时z=12,
∴,
解得,
即z=2x+8,
故答案为:2x+8;
(2)由函数图象知,当0<x≤20时,y与x成一次函数,且函数图象过(10,14),(20,9),
设y=kx+b,
∴,
解得,
∴y=﹣x+19(0<x≤20),
当20<x≤30时,y=9,
∴y关于x的函数关系式为y=;
(3)由题意知,当0<x≤20时,
w=(2x+8)(﹣x+19)=﹣x2+34x+152=﹣(x﹣17)2+1041,
∴此时当x=17时,w有最大值为1041,
当20<x≤30时,
w=(2x+8)×9=18x+72,
∴此时当x=30时,w有最大值为612,
综上所述,销售草莓的第17天时,当天的利润最大,最大利润是1041元.
【点评】本题主要考查一次函数的图象和性质,二次函数的应用等知识,熟练掌握一次函数的图象和性质及二次函数的应用是解题的关键.
3.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本)
……
22
23
24
25
……
每天销售量(本)
……
80
78
76
74
……
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
【分析】(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元得,可解得A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;
(2)①根据两款纪念册每天销售总数不变,可得B款纪念册每天的销售量为(80﹣2m)本;
②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',待定系数法可得y=﹣2x+124,即可得B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,则w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,根据二次函数性质可得答案.
【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,
根据题意得:,
解得,
答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;
(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,
∵两款纪念册每天销售总数不变,
∴B款纪念册每天的销售量为(80﹣2m)本;
②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',
根据表格可得:,
解得,
∴y=﹣2x+124,
当y=80﹣2m时,x=22+m,
即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,
设该店每天所获利润是w元,
由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,
∵﹣4<0,
∴m=6时,w取最大值,最大值为1264元,
此时A款纪念册售价为32﹣m=32﹣6=26(元),
答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.
【点评】本题考查二元一次方程组和二次函数的应用,解题的关键是理解题意,列出方程组和函数关系式.
4.(2022•贵阳)已知二次函数y=ax2+4ax+b.
(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.
【分析】(1)将二次函数解析式化为顶点式求解.
(2)分类讨论a>0,a<0,根据抛物线对称轴及抛物线开口方向求解.
(3)分类讨论a>0,a<0,由抛物线开口向上可得m=﹣2时,n=﹣1,m=1时,n=1,由抛物线开口向下可得m=﹣2时,n=1,m=1时,n=﹣1,进而求解.
【解答】解:(1)∵y=ax2+4ax+b=a(x+2)2﹣4a+b,
∴二次函数图象的顶点坐标为(﹣2,﹣4a+b).
(2)由(1)得抛物线对称轴为直线x=﹣2,
当a>0时,抛物线开口向上,
∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
∴d>c>e=f.
当a<0时,抛物线开口向下,
∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
∴d<c<e=f.
(3)当a>0时,抛物线开口向上,x>﹣2时,y随x增大而增大,
∴m=﹣2时,n=﹣1,m=1时,n=1,
∴,
解得,
∴y=x2+x﹣.
当a<0时,抛物线开口向下,x>﹣2时,y随x增大而减小,
∴m=﹣2时,n=1,m=1时,n=﹣1,
∴,
解得.
∴y=﹣x2﹣x+.
综上所述,y=x2+x﹣或y=﹣x2﹣x+.
【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数与方程的关系,通过分类讨论求解.
5.(2022•营口)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.
(1)求抛物线和直线AB的解析式;
(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;
(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.
【分析】(1)将A,B的坐标分别代入抛物线和直线AB的解析式,组成方程组,解之即可;
(2)如图,设直线AB与y轴交于点G,易证△PDF∽△BOG,所以PD:DF:PF=OB:OG:AB=3:4:5,所以PD=PF,DF=PF,则S1=•PD•DF=PF2,设点P的横坐标为m,则P(m,﹣m2+m+4)(0<m<4),所以F(m,﹣m+3),E(m,0),则PF=﹣m2+m+4﹣(﹣m+3)=﹣m2+m+1,BE=4﹣m,FE=﹣m+3,由三角形的面积分别表达S1和S2,利用给出比例建立方程即可;
(3)当点P在直线AB上方时,过点P作x轴的平行线PH,过点B作x轴的平行线交PH于点H,可证明△PHB≌△NKB(AAS),进而可得点P的纵坐标为3,代入即可得出PH的长,即可得出点N的坐标;当点P在直线AB下方时,如图所示,过点N作x轴的平行线NM,过点B作x轴的垂线BM交NM于点M,过点P作PQ⊥x轴于点Q.同理可得∴△PQB≌△NMB(AAS),求出NM的长和BQ的长,进而可得出点N的坐标.
【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),
∴,
解得,
∴抛物线的解析式为:y=﹣x2+x+4;
设直线AB的解析式为:y=kx+b′,
∴,
解得.
∴直线AB的解析式为:y=﹣x+3.
(2)如图,设直线AB与y轴交于点G,
∴G(0,3),
∴OG=3,OB=4,AB=5,
∵PD⊥AB,PE⊥OB,
∴∠PDF=∠BEF=∠GOB=90°,
∵∠P+∠PFD=∠BFE+∠OBE=90°,∠PFE=∠BFE,
∴∠P=∠OBE,
∴△PDF∽△BOG,
∴PD:DF:PF=OB:OG:AB=3:4:5,
∴PD=PF,DF=PF,
∴S1=•PD•DF=PF2,
设点P的横坐标为m,则P(m,﹣m2+m+4)(0<m<4),
∴F(m,﹣m+3),E(m,0),
∴PF=﹣m2+m+4﹣(﹣m+3)=﹣m2+m+1,BE=4﹣m,FE=﹣m+3,
∴S1=(﹣m2+m+1)2=(m﹣4)2(2m+1)2,
S2=•BE•EF=(4﹣m)(﹣m+3)=(m﹣4)2,
∵=,
∴[(m﹣4)2(2m+1)2]:[(m﹣4)2]=,解得m=3或m=﹣4(舍),
∴P(3,).
(3)存在,点N的坐标为(1,3﹣)或(1,3+).理由如下:
由抛物线的解析式可知,C(0,4),
∴OB=OC=4,
∴∠OBC=∠OCB=45°.
如图,当点P在直线AB上方时,如图所示,过点P作x轴的平行线PH,过点B作x轴的平行线交PH于点H,
∵BC垂直平分PN,
∴BN=BP,∠PBC=∠NBC,
∵∠OBC=∠CBH=45°,
∴∠PBH=∠OBN,
∵∠H=∠BKN=90°,
∴△PHB≌△NKB(AAS),
∴HB=BK,PH=NK,
∵抛物线的对称轴为x=1,
∴BK=3,
∴BH=3,
令﹣x2+x+4=3,
解得x=1+或x=1﹣(舍),
∴PH=4﹣(1+)=3﹣,
∴NK=3﹣,
∴N(1,3﹣);
当点P在直线AB下方时,如图所示,过点N作x轴的平行线NM,过点B作x轴的垂线BM交NM于点M,过点P作PQ⊥x轴于点Q.
∵BC垂直平分PN,
∴BN=BP,∠PBC=∠NBC,
∵∠OBC=∠CBM=45°,
∴∠PBQ=∠MBN,
∵∠M=∠PQB=90°,
∴△PQB≌△NMB(AAS),
∴QB=MB,PQ=NM,
∵抛物线的对称轴为x=1,
∴MN=3,
∴PQ=3,
令﹣x2+x+4=3,
解得x=1+(舍)或x=1﹣,
∴BQ=4﹣(1﹣)=3+,
∴BM=3+,
∴N(1,3+).
综上,存在,点N的坐标为(1,3﹣)或(1,3+).
【点评】本题属于二次函数综合题,涉及待定系数法求函数解析式,相似三角形的性质与判定,三角形的面积,全等三角形的性质与判定等知识,第(3)问解题关键是将垂直平分的条件转化为三角形的全等,得出线段之间的关系.
6.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
(1)求二次函数的表达式;
(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.
【分析】(1)根据抛物线对称轴和点C坐标分别确定b和c的值,进而求得结果;
(2)根据点A,D,C坐标可得出AD,AC,CD的长,从而推出三角形ADC为直角三角形,进而得出∠DAC和∠BCO的正切值相等,从而得出结论;
(3)先得出y1的顶点,进而得出先抛物线的表达式,从而求得M和N的坐标,点M,N,P,Q为顶点的四边形是平行四边形分为▱MNQP和▱MNPQ,根据M,N和点P的横坐标可以得出Q点的横坐标,进而求得结果.
【解答】(1)解:由题意得,
,
∴,
∴二次函数的表达式为:y=﹣x2﹣2x+3;
(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,
∴D(﹣1,4),
由﹣x2﹣2x+3=0得,
x1=﹣3,x2=1,
∴A(﹣3,0),
∴AD2=25,
∵C(0,3),
∴CD2=2,AC2=18,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴tan∠DAC===,
∵∠BOC=90°,
∴tan∠BCO==,
∴∠DAC=∠BCO;
(3)解:如图,
作DE⊥y轴于E,作D1F⊥y轴于F,
∴DE∥FD1,
∴△DEC∽△D1EF,
∴=,
∴FD1=2DE=2,CF=CE=2,
∴D1(2,1),
∴y1的关系式为:y=﹣(x﹣2)2+1,
由﹣(x﹣2)2+1=0得,
x=3或x=1,
∴M(3,0),
当x=0时,y=﹣3,
∴N(0,﹣3),
设P(2,m),
当▱MNQP时,
∴MN∥PQ,PQ=MN,
∴Q点的横坐标为﹣1,
当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,
∴Q(﹣1,8),
当▱MNPQ时,
同理可得:点Q横坐标为:5,
当x=5时,y=﹣(5﹣2)2+1=﹣8,
∴Q′(5,﹣8),
综上所述:点Q(﹣1,﹣8)或(5,﹣8).
【点评】本题考查了求二次函数的表达式,勾股定理的逆定理,相似三角形的判定和性质,平行四边形的性质和分类等知识,解决问题的关键熟练掌握有关基础知识.
7.(2022•盘锦)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点(A在B的左侧),与y轴交于点C(0,9),点D在y轴正半轴上,OD=4,点P是线段OB上的一点,过点B作BE⊥DP,BE交DP的延长线于点E.
(1)求抛物线解析式;
(2)若=,求点P的坐标;
(3)点F为第一象限抛物线上一点,在(2)的条件下,当∠FPD=∠DPO时,求点F的坐标.
【分析】(1)将A(﹣3,0),C(0,9)代入抛物线y=﹣x2+bx+c,建立方程组,求解即可;
(2)易证△DPO∽△BPE,所以===,设OP=t(0<t<6),所以BP=6﹣t,由相似比可得,BE2=,PE2=,在Rt△BPE中,利用勾股定理建立方程可求出t的值,即可得出点P的坐标;
(3)如过点D作DG⊥PF于点G,过点G作GN⊥x轴于点N,过点D作DM⊥GN交NG的延长线于点M,易证△DPO≌△DPG(AAS),所以OD=GD=4,OP=PG=2,由一线三等角可得△MDG∽△NGP,所以DG:GP=MD:GN=MG:PN=2:1,设PN=m,则MG=2m,所以GN=4﹣2m,DM=8﹣4m,由平行四边形的性质可得8﹣4m=2+m,解得m=,可得G(,),由待定系数法可求得直线PF的解析式为:y=x﹣.联立直线PF的解析式和抛物线的解析式可得出点F的坐标.
【解答】解:(1)将A(﹣3,0),C(0,9)代入抛物线y=﹣x2+bx+c,
∴,
解得.
∴抛物线的解析式为:y=﹣x2+x+9.
(2)∵抛物线的解析式为:y=﹣x2+x+9,
∴B(6,0).
∵BE⊥DP,
∴∠E=∠DOP=90°,
∵∠DPO=∠BPE,
∴△DPO∽△BPE,
∴===,
设OP=t(0<t<6),
∴BP=6﹣t,
∴BE2=,PE2=,
在Rt△BPE中,由勾股定理可得,BE2+PE2=PB2,
∴+=(6﹣t)2,解得t=58(舍)或t=2,
∴P(2,0);
(3)如图,过点D作DG⊥PF于点G,过点G作GN⊥x轴于点N,过点D作DM⊥GN交NG的延长线于点M,
∴∠DOP=∠DGP=90°,
∵∠FPD=∠DPO,DP=DP,
∴△DPO≌△DPG(AAS),
∴OD=GD=4,OP=PG=2,
∵GN⊥x轴,DM⊥GN,
∴∠M=∠GNP=90°,
∵∠DGM+∠MDG=∠DGM+∠PGN=90°,
∴∠MDG=∠PGN,
∴△MDG∽△NGP,
∴DG:GP=MD:GN=MG:PN=2:1,
设PN=m,则MG=2m,
∴GN=4﹣2m,
∴DM=8﹣4m,
∴8﹣4m=2+m,解得m=,
∴ON=2+=,GN=4﹣2×=,
∴G(,),
设直线PF的解析式为:y=kx+b′,
∴,
解得,
∴直线PF的解析式为:y=x﹣.
令x﹣=﹣x2+x+9,解得x=5或x=﹣(舍),
∴F(5,4).
【点评】本题属于二次函数综合题,涉及待定系数法求函数解析式,相似三角形的性质与判定,全等三角形的性质与判定,二次函数上点的坐标特征等知识,第(2)问关键是利用相似三角形的面积比等于相似比的平方表达出BE2和PE2;第(3)问关键是构造相似三角形,建立方程.
8.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
【分析】(1)将(2,4)代入解析式求解.
(2)由判别式Δ的符号可判断抛物线与x轴交点个数.
【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,
解得m1=1,m2=﹣3,
又∵m>0,
∴m=1.
(2)∵m=1,
∴y=x2+x﹣2,
∵Δ=b2﹣4ac=12+8=9>0,
∴二次函数图象与x轴有2个交点.
【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.
9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.
(1)求抛物线的函数表达式及点D的坐标;
(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;
(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.
【分析】(1)二次函数表达式可设为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3,解方程可得a和b的值,再利用顶点坐标公式可得点D的坐标;
(2)根据t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.分两种情形,当△EMN∽△OBC时,得,解得t=;当△EMN∽△OCB时,得,解得t=;
(3)首先利用中点坐标公式可得点G的坐标,利用待定系数法求出直线AG和BG的解析式,再根据直线l:y=kx+m与抛物线图象只有一个公共点,联立两函数解析式,可得Δ=0,再求出点H和k的横坐标,从而解决问题.
【解答】解:(1)设二次函数表达式为:y=ax2+bx+3,
将A(1,0)、B(4,0)代入y=ax2+bx+3得:
,
解得,,
∴抛物线的函数表达式为:,
又∵=,==,
∴顶点为D;
(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.
①当△EMN∽△OBC时,
∴,
解得t=;
②当△EMN∽△OCB时,
∴,
解得t=;
综上得,当或时,以M、E、N为顶点的三角形与△BOC相似;
(3)∵点关于点D的对称点为点G,
∴,
∵直线l:y=kx+m与抛物线图象只有一个公共点,
∴只有一个实数解,
∴Δ=0,
即:,
解得:,
利用待定系数法可得直线GA的解析式为:,直线GB的解析式为:,
联立,结合已知,
解得:xH=,
同理可得:xK=,
则:GH==,GK==×,
∴GH+GK=+×=,
∴GH+GK的值为.
【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的判定与性质,函数与方程的关系,一元二次方程根的判别式等知识,联立两函数关系求出点H和K的横坐标是解题的关键,属于中考压轴题.
10.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
【分析】(1)根据题意直接写出y与x之间的函数关系式和自变量的取值范围;
(2)根据销售利润=销售量×(批发价﹣成本价),列出销售利润w(千元)与批发价x(千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.
【解答】解:(1)根据题意得y=12﹣2(x﹣4)=﹣2x+20(4≤x≤5.5),
所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=﹣2x+20,
自变量x的取值范围是4≤x≤5.5;
(2)设每天获得的利润为W千元,根据题意得w=(﹣2x+20)(x﹣2)=﹣2x2+24x﹣40=﹣2(x﹣6)2+32,
∵﹣2<0,
∴当x<6,W随x的增大而增大.
∵4≤x≤5.5,
∴当x=5.5时,w有最大值,最大值为﹣2×(5.5﹣6)2+32=31.5,
∴将批发价定为5.5元时,每天获得的利润最大,最大利润是31.5千元.
【点评】本题考查二次函数应用,以及利用二次函数的性质求最大值,解题的关键是读懂题意,列出函数关系式.
11.(2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:
每千克售价x(元)
……
20
22
24
……
日销售量y(千克)
……
66
60
54
……
(1)求y与x之间的函数关系式;
(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?
【分析】(1)设y与x之间的函数关系式为y=kx+b,由表中数据即可得出结论;
(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由表中数据得:,
解得:,
∴y与x之间的函数关系式为y=﹣3x+126;
(2)设批发商每日销售这批山野菜所获得的利润为w元,
由题意得:w=(x﹣18)y=(x﹣18)(﹣3x+126)=﹣3x2+180x﹣2268=﹣3(x﹣30)2+432,
∵市场监督部门规定其售价每千克不高于28元,
∴18≤x≤28,
∵﹣3<0,
∴当x<30时,w随x的增大而增大,
∴当x=28时,w最大,最大值为420,
∴当每千克山野菜的售价定为28元时,批发商每日销售这批山野菜所获得的利润最大,最大利润为420元.
【点评】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.
12.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
【分析】(1)把A(﹣1,0)、B(0,3)、C(3,0)代入y=ax2+bx+c,即可得解;
(2)根据正方形的性质得出∠OBC=∠DBC,BD=OB,再由BF=BF,得出△BOF≌△BDF,最后利用全等三角形的性质得出结论;
(3)分两种情况讨论解答,当M在线段BD的延长线上时,先求出∠M,再利用解直角三角形得出结果,当M在线段BD上时,得出∠BOM=30°,类别①解答即可.
【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,
把A(﹣1,0)、B(0,3)、C(3,0)代入
得:,解得,
∴抛物线的表达式为:y=﹣x2+2x+3;
(2)证明:∵正方形OBDC,
∴∠OBC=∠DBC,BD=OB,
∵BF=BF,
∴△BOF≌△BDF,
∴∠BOF=∠BDF;
(3)解:∵抛物线交正方形OBDC的边BD于点E,
∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,
∴E(2,3),
①如图,
当M在线段BD的延长线上时,∠BDF为锐角,
∴∠FDM为钝角,
∵△MDF为等腰三角形,
∴DF=DM,
∴∠M=∠DFM,
∴∠BDF=∠M+∠DFM=2∠M,
∵BM∥OC,
∴∠M=∠MOC,
由(2)得∠BOF=∠BDF,
∴∠BDF+∠MOC=3∠M=90°,
∴∠M=30°,
在Rt△BOM中,
BM=,
∴ME=BM﹣BE=3﹣2;
②如图,
当M在线段BD上时,∠DMF为钝角,
∵△MDF为等腰三角形,
∴MF=DM,
∴∠BDF=∠MFD,
∴∠BMO=∠BDF+∠MFD=2∠BDF,
由(2)得∠BOF=∠BDF,
∴∠BMO=2∠BOM,
∴∠BOM+∠BMO=3∠BOM=90°,
∴∠BOM=30°,
在Rt△BOM中,
BM=,
∴ME=BE﹣BM=2﹣,
综上所述,ME的值为:3﹣2或2﹣.
【点评】本题考查了二次函数的性质,正方形的性质,全等三角形的判定与性质,等腰三角形的性质及解直角三角形,分类讨论思想的运用是解题的关键.
13.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为x=t.
(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;
(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.
【分析】(1)将点(1,m),N(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;
(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.
【解答】解:(1)将点(1,m),N(3,n)代入抛物线解析式,
∴,
∵m=n,
∴a+b+c=9a+3b+c,整理得,b=﹣4a,
∴抛物线的对称轴为直线x=﹣=﹣=2;
∴t=2,
∵c=2,
∴抛物线与y轴交点的坐标为(0,2).
(2)∵m<n<c,
∴a+b+c<9a+3b+c<c,
解得﹣4a<b<﹣3a,
∴3a<﹣b<4a,
∴<﹣<,即<t<2.
当t=时,x0=2;
当t=2时,x0=3.
∴x0的取值范围2<x0<3.
【点评】本题考查二次函数的性质,解题关键是根据数形结合求解.
14.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).
某运动员进行了两次训练.
(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:
水平距离x/m
0
2
5
8
11
14
竖直高度y/m
20.00
21.40
22.75
23.20
22.75
21.40
根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);
(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1 < d2(填“>”“=”或“<”).
【分析】(1)先根据表格中的数据找到顶点坐标,即可得出h、k的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a的值即可得出函数解析式;
(2)设着陆点的纵坐标为t,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t表示出d1和d2,然后进行比较即可.
【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),
∴h=8,k=23.20,
即该运动员竖直高度的最大值为23.20m,
根据表格中的数据可知,当x=0时,y=20.00,代入y=a(x﹣8)2+23.20得:
20.00=a(0﹣8)2+23.20,
解得:a=﹣0.05,
∴函数关系式为:y=﹣0.05(x﹣8)2+23.20;
(2)设着陆点的纵坐标为t,则第一次训练时,t=﹣0.05(x﹣8)2+23.20,
解得:x=8+或x=8﹣,
∴根据图象可知,第一次训练时着陆点的水平距离d1=8+,
第二次训练时,t=﹣0.04(x﹣9)2+23.24,
解得:x=9+或x=9﹣,
∴根据图象可知,第二次训练时着陆点的水平距离d2=9+,
∵20(23.20﹣t)<25(23.24﹣t),
∴<,
∴d1<d2,
故答案为:<.
【点评】本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t,用t表示出d1和d2是解题的关键.
15.(2022•呼和浩特)如图,抛物线y=﹣x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,连接AC、BC.
(1)求抛物线的解析式及点A的坐标;
(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ∥y轴,分别交BC、x轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.
【分析】(1)用待定系数法可得抛物线的解析式为y=﹣x2+x+2,令y=0得A(﹣1,0);
(2)由A(﹣1,0),C(0,2),知线段AC的中点D(﹣,1),设E(0,t),根据∠BED=90°,得[(4﹣0)2+(0﹣t)2]+[(﹣﹣0)2+(1﹣t)2]=(4+)2+(0﹣1)2,即可解得E的坐标为(0,﹣1)或(0,2);
(3)分当∠PCM=2∠OBC时,∠CMP=2∠OBC时,当∠CPM=2∠OBC时三种情况,利用二次函数的性质和等腰三角形,勾股定理等性质进行计算即可.
【解答】解:(1)将点B(4,0)和点C(0,2)代入抛物线y=﹣x2+bx+c中,
则,
解得:,
∴抛物线的解析式为y=﹣x2+x+2,
在y=﹣x2+x+2中,令y=0得﹣x2+x+2=0,
解得:x1=﹣1,x2=4,
∴A(﹣1,0);
(2)存在y轴上一点E,使得△BDE是以BD为斜边的直角三角形,理由如下:
如图:
∵点D是线段AC的中点,A(﹣1,0),C(0,2),
∴D(﹣,1),
设E(0,t),
又B(4,0),
∵∠BED=90°,
∴BE2+DE2=BD2,
即[(4﹣0)2+(0﹣t)2]+[(﹣﹣0)2+(1﹣t)2]=(4+)2+(0﹣1)2,
化简得:t2﹣t﹣2=0,
解得:t1=﹣1,t2=2,
∴E的坐标为(0,﹣1)或(0,2);
(3)∵B(4,0)、C(0,2),
∴设直线BC的解析式为y=kx+2(k≠0),
把点B(4,0)代入解析式得,4k+2=0,
解得:k=﹣,
∴直线BC的解析式为y=﹣x+2,
设点P(m,﹣m2+m+2),则M(m,﹣m+2),
①当∠PCM=2∠OBC时,
过点C作CF⊥PM于点F,如图,
∵CF⊥PM,PM∥y轴,
∴CF∥OB,
∴∠FCM=∠OBC,F(m,2),
又∵∠PCM=2∠OBC,
∴∠PCF=FCM=∠OBC,
∴F是线段PM的中点,
∴=2,
整理得:m2﹣2m=0,
解得:m=2或m=0,
∵点P是第一象限内抛物线上的动点,
∴m=2;
②∠CMP=2∠OBC时,
∵∠CMP=∠BMN,
∴∠BMN=2∠OBC,即∠BMN=2∠NBM,
∵PN⊥x轴,
∴∠BMN+∠NBM=90°,
即3∠NBM=90°,
∴∠NBM=30°,
∴OC=BC,
∵BC===2≠4,
∴此种情况不存在;
③当∠CPM=2∠OBC时,
∵∠CMP=∠NMB=90°﹣∠OBC,
∴∠PCM=180°﹣∠CPM﹣∠CMP=180°﹣2∠OBC﹣(90°﹣∠OBC)=90°﹣∠OBC,
∴∠PCM=∠CMP,
∴PC=PM,
∴(m﹣0)2+(﹣+m+2﹣2)2=[(﹣+m+2)﹣(﹣m+2)]2,
整理得:m2+m4﹣m3+m2=m4﹣2m3+4m2,
解得:m=;
综上所述,满足条件的点P的横坐标为2或.
【点评】本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质、直角三角形性质及应用,利用分类讨论的思想是解题的关键.
16.(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.
(1)求抛物线的解析式;
(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S2=S1时.求点P的横坐标;
(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.
【分析】(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,即可求解;
(2)过点P作x轴垂线交AC于点M,交x轴于点N,设P(m,m2﹣2m﹣3),则N(m,m﹣3),S2=×OA×PM=m2+m,S1=×BF×AD=4,由题意可求m的值;
(3)设Q(x,y),分四种情况讨论:①当△CDF∽△QAE时,AQ=5,EQ=5,可求Q(﹣7,5);②当△CDF∽△AQE时,AQ=5,QE=10,解得Q(﹣12,5);③当△CDF∽△EQA时,EQ=5,AQ=10,可求得Q(3,﹣10);④当△CDF∽△QEA时,EQ=5,AQ=5,解得Q(3,﹣5).
【解答】解:(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,
∴,
解得,
∴y=x2﹣2x﹣3;
(2)将A(3,0)代入y=﹣x+b中,
∴b=3,
∴y=﹣x+3,
设直线AC的解析式为y=kx+b',
∴,
解得,
∴y=x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴B(1,2),D(1,0),F(1,﹣2),
过点P作x轴垂线交AC于点M,交x轴于点N,
设P(m,m2﹣2m﹣3),则N(m,m﹣3),
∴PM=﹣m2+3m,
∴S2=×OA×PM=m2+m,
S1=×BF×AD=4,
∵S2=S1,
∴m2+m=,
解得m=或m=,
∴P点的横坐标为或;
(3)∵C(0,﹣3),D(1,0),F(1,﹣2),
∴CD=,CF=,DF=2,
∵E(﹣2,5),A(3,0),
∴AE=5,
设Q(x,y),
①当△CDF∽△QAE时,==,
∴==,
∴AQ=5,EQ=5,
∴,
解得或(舍),
∴Q(﹣7,5);
②当△CDF∽△AQE时,==,
∴==,
∴AQ=5,QE=10,
∴,
解得(舍)或,
∴Q(﹣12,5);
③当△CDF∽△EQA时,==,
∴==,
∴EQ=5,AQ=10,
∴,
解得或(舍),
∴Q(3,﹣10);
④当△CDF∽△QEA时,==,
∴==,
∴EQ=5,AQ=5,
∴,
解得或(舍),
∴Q(3,﹣5);
综上所述:Q点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5).
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,相似三角形的判定及性质,分类讨论是解题的关键.
17.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
【分析】(1)把点B,C两点坐标代入抛物线的解析式,解方程组,可得结论;
(2)存在.如图1中,设D(t,t2+t﹣4),连接OD.构建二次函数,利用二次函数的性质,解决问题;
(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4),分三种情形:∠PAB=90°,∠PBA=90°,∠APB=90°,分别求解可得结论.
【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),
∴,
解得,
∴抛物线的解析式为y=x2+x﹣4;
(2)存在.
理由:如图1中,设D(t,t2+t﹣4),连接OD.
令y=0,则x2+x﹣4=0,
解得x=﹣4或2,
∴A(﹣4,0),C(2,0),
∵B(0,﹣4),
∴OA=OB=4,
∵S△ABD=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)2+4,
∵﹣1<0,
∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);
(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);
∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,
当∠P1AB=90°时,△ANP1是等腰直角三角形,
∴AN=NP1=3,
∴P1(﹣1,3),
当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),
当∠APB=90°时,设P(﹣1,n),设AN的中点为J,连接PJ,则J(﹣2,﹣2),
∴NJ=AB=2,
∴12+(n+2)2=(2)2,
解得n=﹣2或﹣﹣2,
∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),
综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).
【点评】本题属于二次函数综合题,考查了二次函数的性质,直角三角形的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
18.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= y=﹣x2+6x﹣5(答案不唯一) ,实数k的取值范围是 4≤k≤5 ;
(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
【分析】(1)用待定系数法可得二次函数的表达式为y=﹣x2﹣2x+3;
(2)将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,新图象的对称轴为直线x=k﹣1,根据当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k﹣1≤4,得4≤k≤5,即可得到答案;
(3)求出A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,可得BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m3|,故△BHC是等腰直角三角形,∠ACB=45°.
【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:
,
解得,
∴二次函数的表达式为y=﹣x2﹣2x+3;
(2)如图:
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,
∴新图象的对称轴为直线x=k﹣1,
∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,
∴3≤k﹣1≤4,
解得4≤k≤5,
∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,
故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;
(3)如图:
∵点A、B的横坐标分别是m、m+1,
∴yA=﹣m2﹣2m+3,yB=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,
∴A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),
∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,
∴=﹣1,AC∥x轴,
∴xC=﹣2﹣m,
∴C(﹣2﹣m,﹣m2﹣2m+3),
过B作BH⊥AC于H,
∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m3|,
∴BH=CH,
∴△BHC是等腰直角三角形,
∴∠HCB=45°,即∠ACB=45°.
【点评】本题考查二次函数综合应用,涉及待定系数法,抛物线的平移变换,等腰直角三角形的判定等知识,解题的关键是数形结合思想的应用.
19.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),然后用待定系数法求函数解析式;
(2)根据利润=单件利润×销售量列出函数解析式,然后由函数的性质以及自变量的取值范围求出函数最值.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知:,
解得:,
故y与x的函数关系式为y=﹣20x+500;
(2)设每天销售这种商品所获的利润为w,
∵y=﹣20x+500,
∴w=(x﹣13)y=(x﹣13)(﹣20x+500)
=﹣20x2+760x﹣6500
=﹣20(x﹣19)2+720,
∵﹣20<0,
∴当x<19时,w随x的增大而增大,
∵13≤x≤18,
∴当x=18时,w有最大值,最大值为700,
∴售价定为18元/件时,每天最大利润为700元.
【点评】本题考查二次函数的应用,关键是根据利润=单件利润×销售量列出函数解析式.
20.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.
(1)求抛物线的解析式;
(2)当点D在第二象限且=时,求点D的坐标;
(3)当△ODF为直角三角形时,请直接写出点D的坐标.
【分析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,即可求解;
(2)过点D作DG⊥AB交于G,交AC于点H,设D(n,﹣n2﹣3n+4),H(n,n+4),由DH∥OC,可得==,求出D(﹣1,6)或(﹣3,4);
(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,证明△MDF≌△NOD(AAS),可得D点纵坐标为2,求出D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,证明△KDF≌△LFO(AAS),得到D点纵坐标为4,求得D(0,4)或(﹣3,4).
【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,
∴,
解得,
∴y=﹣x2﹣3x+4;
(2)过点D作DG⊥AB交于G,交AC于点H,
设直线AC的解析式为y=kx+b,
∴,
解得,
∴y=x+4,
设D(n,﹣n2﹣3n+4),H(n,n+4),
∴DH=﹣n2﹣4n,
∵DH∥OC,
∴==,
∵OC=4,
∴DH=3,
∴﹣n2﹣4n=3,
解得n=﹣1或n=﹣3,
∴D(﹣1,6)或(﹣3,4);
(3)设F(t,t+4),
当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,
∵∠DOF=45°,
∴DF=DO,
∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,
∴∠NDO=∠MFD,
∴△MDF≌△NOD(AAS),
∴DM=ON,MF=DN,
∴DN+ON=﹣t,DN=ON+(﹣t﹣4),
∴DN=﹣t﹣2,ON=2,
∴D点纵坐标为2,
∴﹣x2﹣3x+4=2,
解得x=或x=,
∴D点坐标为(,2)或(,2);
当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,
∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,
∴∠LFO=∠KDF,
∵DF=FO,
∴△KDF≌△LFO(AAS),
∴KD=FL,KF=LO,
∴KL=t+4﹣t=4,
∴D点纵坐标为4,
∴﹣x2﹣3x+4=4,
解得x=0或x=﹣3,
∴D(0,4)或(﹣3,4);
综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形全等的判定及性质,灵活应用平行线的性质,等腰直角三角形的性质,分类讨论是解题的关键.
21.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.
(1)求b,c的值;
(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.
①求x关于t的函数解析式;
②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
【分析】(1)根据题意,可以求得点A和点B的坐标,然后代入二次函数解析式,即可得到b、c的值;
(2)①根据题意,可以得到x关于t的函数图象经过的两个点,然后根据待定系数法,即可得到x关于t的函数的解析式;
②先求出直线AB的解析式,再根据题意,可以表示出h,然后根据二次函数的性质,可以求得当h为何值时,运动员离着陆坡的竖直距离h最大,并求出这个最大值.
【解答】解:(1)作BE⊥y轴于点E,
∵OA=65m,着陆坡AC的坡角为30°,AB=100m,
∴点A的坐标为(0,65),AE=50m,BE=50m,
∴OE=OA﹣AE=65﹣50=15(m),
∴点B的坐标为(50,15),
∵点A(0,65),点B(50,15)在二次函数y=﹣x2+bx+c的图象上,
∴,
解得,
即b的值是,c的值是65;
(2)①设x关于t的函数解析式是x=kt+m,
因为点(0,0),(5,50)在该函数图象上,
∴,
解得,
即x关于t的函数解析式是x=10t;
②设直线AB的解析式为y=px+q,
∵点A(0,65),点B(50,15)在该直线上,
∴,
解得,
即直线AB的解析式为y=﹣x+65,
则h=(﹣x2+x+65)﹣(﹣x+65)=﹣x2+x,
∴当x=﹣=25时,h取得最值,此时h=,
∵25<50,
∴x=25时,h取得最值,符合题意,
将x=25代入x=10t,得:25=10t,
解得t=2.5,
即当t为2.5时,运动员离着陆坡的竖直距离h最大,最大值是m.
【点评】本题考查二次函数的应用、一次函数的应用、解直角三角形,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质求最值.
22.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.
【分析】(1)把点P(0,4)代入y=﹣x2+c,即可求得答案;
(2)根据题意平移后的新抛物线y=﹣(x+1)2+4,平移后的抛物线顶点为Q(﹣1,4),再求出C(0,3),B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,可推出:△CPQ是等腰直角三角形,△BOC是等腰直角三角形,即可证得△BCQ是直角三角形.
(3)设T(x,0),且x>0,则BT=x+3,利用待定系数法得出直线BC的解析式为y=x+3,联立方程组求得:M(﹣,),N(,),进而可得BN=,再分两种情况:①当△NBT∽△CBA时,则=,②当△NBT∽△ABC时,则=,分别建立方程求解即可得出答案.
(4)由于直线AB与y轴的夹角为45°,当抛物线沿着垂直直线AB的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),可得y=﹣(x﹣t)2+4﹣t,联立得x2+(1﹣2t)x+t2+t﹣1=0,运用根的判别式即可求得答案.
【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),
∴c=4,
∴抛物线的解析式为y=﹣x2+4;
(2)△BCQ是直角三角形.理由如下:
将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,
∴平移后的抛物线顶点为Q(﹣1,4),
令x=0,得y=﹣1+4=3,
∴C(0,3),
令y=0,得﹣(x+1)2+4=0,
解得:x1=1,x2=﹣3,
∴B(﹣3,0),A(1,0),
如图1,连接BQ,CQ,PQ,
∵P(0,4),Q(﹣1,4),
∴PQ⊥y轴,PQ=1,
∵CP=4﹣3=1,
∴PQ=CP,∠CPQ=90°,
∴△CPQ是等腰直角三角形,
∴∠PCQ=45°,
∵OB=OC=3,∠BOC=90°,
∴△BOC是等腰直角三角形,
∴∠BCO=45°,
∴∠BCQ=180°﹣45°﹣45°=90°,
∴△BCQ是直角三角形.
(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.
∵△ABC是锐角三角形,∠ABC=45°,
∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,
即点T在y轴的右侧,
设T(x,0),且x>0,则BT=x+3,
∵B(﹣3,0),A(1,0),C(0,3),
∴∠ABC=45°,AB=4,BC=3,
设直线BC的解析式为y=kx+b,
则,
解得:,
∴直线BC的解析式为y=x+3,
由,
解得:,,
∴M(﹣,),N(,),
∴BN=×=,
①当△NBT∽△CBA时,则=,
∴=,
解得:x=,
∴T(,0);
②当△NBT∽△ABC时,则=,
∴=,
解得:x=,
∴T(,0);
综上所述,点T的坐标T(,0)或(,0).
(4)抛物线y=﹣x2+4的顶点为P(0,4),
∵直线BC的解析式为y=x+3,
∴直线AB与y轴的夹角为45°,当抛物线沿着垂直直线AB的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,
设平移后的抛物线的顶点为P′(t,4﹣t),
则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,
由﹣(x﹣t)2+4﹣t=x+3,
整理得:x2+(1﹣2t)x+t2+t﹣1=0,
∵平移后的抛物线与直线BC最多只有一个公共点,
∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,
解得:t=,
∴平移后的抛物线的顶点为P′(,),平移的最短距离为.
【点评】本题是二次函数综合题,考查了待定系数法,抛物线的平移变换,直角三角形的性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,一元二次方程根的判别式的应用等,熟练掌握二次函数的图象及性质、数形结合、分类讨论是解题的关键.
23.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求这条抛物线所对应的函数的表达式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
【分析】(1)运用待定系数法即可解决问题;
(2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,可用待定系数法求出直线AC的解析式,设点D的横坐标为m,则点G的横坐标也为m,从而可以用m的代数式表示出DG,然后利用cos∠EDG=cos∠CAO得到DE=DG,可得出关于m的二次函数,运用二次函数的最值即可解决问题;
(3)根据S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,即可求解.
【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
∴,
解得:,
∴抛物线的解析式为y=﹣x2﹣x+2;
(2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,如图.
设直线AC的解析式为y=kx+t,
则,
解得:,
∴直线AC的解析式为y=x+2.
设点D的横坐标为m,则点G的横坐标也为m,
∴DH=﹣m2﹣m+2,GH=m+2
∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,
∵DE⊥AC,DH⊥AB,
∴∠EDG+DGE=AGH+∠CAO=90°,
∵∠DGE=∠AGH,
∴∠EDG=∠CAO,
∴cos∠EDG=cos∠CAO==,
∴,
∴DE=DG=(﹣m2﹣m)=﹣(m2+4m)=﹣(m+2)2+,
∴当m=﹣2时,点D到直线AC的距离取得最大值.
此时yD=﹣×(﹣2)2﹣×(﹣2)+2=2,
即点D的坐标为(﹣2,2);
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为1:5两部分,
又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,
则BE:AE=1:5或5:1
则AE=5或1,
即点E的坐标为(1,0)或(﹣3,0),
将点E的坐标代入直线CP的表达式:y=nx+2,
解得:n=﹣2或,
故直线CP的表达式为:y=﹣2x+2或y=x+2,
联立方程组或,
解得:x=6或﹣(不合题意值已舍去),
故点P的坐标为(6,﹣10)或(﹣,﹣).
【点评】本题是二次函数综合题,考查了待定系数法求函数的解析式,二次函数的性质,锐角三角函数、图象面积计算等,解决问题的关键是将面积比转化为线段比.
24.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.
(1)写出C2的解析式(用含a的式子表示)及顶点坐标;
(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.
①当MN=6a时,求点P的坐标;
②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.
【分析】(1)根据“关联抛物线”的定义可直接得出C2的解析式,再将该解析式化成顶点式,可得出C2的顶点坐标;
(2)①设点P的横坐标为m,则可表达点M和点N的坐标,根据两点间距离公式可表达MN的长,列出方程,可求出点P的坐标;
②分情况讨论,当a﹣4≤﹣2≤a﹣2时,当﹣2≤a﹣4≤a﹣2时,当a﹣4≤a﹣2≤﹣2时,分别得出C2的最大值和最小值,进而列出方程,可求出a的值.
【解答】解:(1)根据“关联抛物线”的定义可得C2的解析式为:y=ax2+4ax+4a﹣3,
∵y=ax2+4ax+4a﹣3=a(x+2)2﹣3,
∴C2的顶点坐标为(﹣2,﹣3);
(2)①设点P的横坐标为m,
∵过点P作x轴的垂线分别交抛物线C1,C2于点M,N,
∴M(m,4am2+am+4a﹣3),N(m,am2+4am+4a﹣3),
∴MN=|4am2+am+4a﹣3﹣(am2+4am+4a﹣3)|=|3am2﹣3am|,
∵MN=6a,
∴|3am2﹣3am|=6a,
解得m=﹣1或m=2,
∴P(﹣1,0)或(2,0).
②∵C2的解析式为:y=a(x+2)2﹣3,
∴当x=﹣2时,y=﹣3,
当x=a﹣4时,y=a(a﹣4+2)2﹣3=a(a﹣2)2﹣3,
当x=a﹣2时,y=a(a﹣2+2)2﹣3=a3﹣3,
根据题意可知,需要分三种情况讨论,
Ⅰ、当a﹣4≤﹣2≤a﹣2时,0<a≤2,
且当0<a≤1时,函数的最大值为a(a﹣2)2﹣3;函数的最小值为﹣3,
∴a(a﹣2)2﹣3﹣(﹣3)=2a,解得a=2﹣或a=2+(舍);
当1≤a≤2时,函数的最大值为a3﹣3;函数的最小值为﹣3,
∴a3﹣3﹣(﹣3)=2a,解得a=或a=﹣(舍);
Ⅱ、当﹣2≤a﹣4≤a﹣2时,a≥2,
函数的最大值为a3﹣3,函数的最小值为a(a﹣2)2﹣3;
∴a3﹣3﹣[a(a﹣2)2﹣3]=2a,
解得a=(舍);
Ⅲ、当a﹣4≤a﹣2≤﹣2时,a≤0,不符合题意,舍去;
综上,a的值为2﹣或.
【点评】本题属于二次函数背景下新定义类问题,涉及两点间距离公式,二次函数的图象及性质,由“关联抛物线”的定义得出C2的解析式,掌握二次函数图象的性质是解题关键.
25.(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;
(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;
(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.
【分析】(1)将A,C两点坐标代入抛物线的解析式,进一步求得结果;
(2)可推出△PCB是直角三角形,进而求出△BOC和△PBC的面积之和,从而求得四边形BOCP的面积;
(3)作PE∥AB交BC的延长线于E,根据△PDE∽△ADB,求得的函数解析式,从而求得P点坐标,进而分为点P和点A和点Q分别为直角顶点,构造“一线三直角”,进一步求得结果;
(4)作GL∥y轴,作RC⊥GL于L,作MT⊥KI于K,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.根据△GLC≌△CRH可表示出H点坐标,从而表示出点K坐标,进而表示出I坐标,根据MT=IW,构建方程求得n的值.
【解答】解:(1)由题意得,
,
∴,
∴该抛物线的函数表达式为:y=﹣x2+2x+3;
(2)当y=0时,﹣x2+2x+3=0,
∴x1=﹣1,x2﹣3,
∴B(3,0),
∵PC2+BC2=[1+(4﹣3)2]+(32+32)=20,PB2=[(3﹣1)2+42]=20,
∴PC2+BC2=PB2,
∴∠PCB=90°,
∴S△PBC===3,
∵S△BOC===,
∴S四边形BOCP=S△PBC+S△BOC=3+=;
(3)如图1,作PE∥AB交BC的延长线于E,
设P(m,﹣m2+2m+3),
∵B(3,0),C(0,3),
∴直线BC的解析式为:y=﹣x+3,
由﹣x+3=﹣m2+2m+3得,
x=m2﹣2m,
∴PE=m﹣(m2﹣2m)=﹣m2+3m,
∵PE∥AB,
∴△PDE∽△ADB,
∴===﹣(m﹣)2+,
∴当m=时,()最大=,
当m=时,y=﹣()2+2×+3=,
∴P(,),
设Q(n,﹣n2+2n+3),
如图2,当∠PAQ=90°时,过点A作y轴平行线AF,作PF⊥AF于F,作QG⊥AF于G,则△AFP∽△GQA,
∴=,
∴=,
∴n=,
如图3,当∠AQP=90°时,过QN⊥AB于N,作PM⊥QN于M,可得△ANQ∽△QMP,
∴=,
∴=,
可得n1=1,n2=,
如图4,当∠APQ=90°时,作PT⊥AB于T,作OR⊥PT于R,
同理可得:=,
∴n=,
综上所述:点Q的横坐标为:或1或或;
(4)如图5,作GL∥y轴,作RC⊥GL于L,作MT⊥KI于K,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.
∴RH=OG=﹣n,CR=GL=OC=3,MT=IW,
∴G(n,0),H(3,3+n),
∴K(,),
∴I(,﹣()2+n+3+3),
∵TM=IW,
∴=()2+n+6﹣(3+n),
∴(n+3)2+2(n+3)﹣12=0,
∴n1=﹣4+,n2=﹣4﹣(舍去),
∴G(﹣4+,0).
【点评】本题考查了二次函数及其图象性质,全等三角形的判定和性质,相似三角形的判定和性质,正方形的判定和性质等知识,解决问题的关键是熟练掌握“一线三直角”模型及需要较强计算能力.
26.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.
(1)求第14天小颖家草莓的日销售量;
(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;
(3)试比较第8天与第10天的销售金额哪天多?
【分析】(1)当10≤x≤16时,y=﹣20x+320,把x=14代入,求出其解即可;
(2)利用待定系数法即可求得草莓价格m与x之间的函数关系式;
(3)利用销售金额=销售量×草莓价格,比较第8天与第10天的销售金额,即可得答案.
【解答】解:(1)∵当10≤x≤16时,y=﹣20x+320,
∴当x=14时,y=﹣20×14+320=40(千克),
∴第14天小颖家草莓的日销售量是40千克.
(2)当4≤x≤12时,设草莓价格m与x之间的函数关系式为m=kx+b,
∵点(4,24),(12,16)在m=kx+b的图象上,
∴,
解得:,
∴函数解析式为m=﹣x+28.
(3)当0≤x≤10时,y=12x,
∴当x=8时,y=12×8=96,
当x=10时,y=12×10=120;
当4≤x≤12时,m=﹣x+28,
∴当x=8时,m=﹣8+28=20,
当x=10时,m=﹣10+28=18
∴第8天的销售金额为:96×20=1920(元),
第10天的销售金额为:120×18=2160(元),
∵2160>1920,
∴第10天的销售金额多.
【点评】此题考查了一次函数的应用.此题难度适中,解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.
27.(2022•大庆)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
(1)图中点P所表示的实际意义是 增种果树28棵,每棵果树平均产量为66kg ,每增种1棵果树时,每棵果树平均产量减少 kg;
(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?
【分析】(1)根据题意可知点P所表示的实际意义,列算式求出每增种1棵果树时,每棵果树平均产量减少多少kg;
(2)先求出A点坐标,再求出y与x之间的函数关系式,再求出自变量x的取值范围;
(3)根据题意写出二次函数解析式,根据其性质,求出当增种果树多少棵时,果园的总产量w(kg)最大,及最大产量是多少.
【解答】解:(1)根据题意可知:点P所表示的实际意义是增种果树28棵,每棵果树平均产量为66kg,
(75﹣66)÷(28﹣10)=,
∴每增种1棵果树时,每棵果树平均产量减少kg,
故答案为:增种果树28棵,每棵果树平均产量为66kg,kg;
(2)
设在10棵的基础上增种m棵,
根据题意可得m=75﹣40,
解得m=70,
∴A(80,40),
设y与x之间的函数关系式:y=kx+b,
把P(28,66),A(80,40),
,
解得k=﹣,b=80,
∴y与x之间的函数关系式:y=﹣x+80;
自变量x的取值范围:0≤x≤80;
(3)设增种果树a棵,
W=(60+a)(﹣0.5a+80)
=﹣0.5a2+50a+4800,
∵﹣0.5<0,
∴a=﹣=50,
W最大=6050,
∴当增种果树50棵时,果园的总产量w(kg)最大,最大产量是6050kg.
【点评】本题考查了二次函数的应用,掌握用待定系数法求二次函数解析式,用二次函数的性质求出最大产量是解题关键.
28.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.
【分析】(1)根据直线解析式可得点A、B的坐标,代入二次函数解析式,解方程即可;
(2)①由旋转的性质可得E(6,3),当x=6时,y==3,可知点E在抛物线上;
②过点E作EH⊥AB,交y轴于P,垂足为H,sin∠ABO=,则HP=BP,得BP+EP=HP+PE,可知HP+PE的最小值为EH的长,从而解决问题.
【解答】解:(1)∵直线y=﹣x﹣4分别与x,y轴交于点A,B,
∴当x=0时,y=﹣4;当y=0时,x=﹣3,
∴A(﹣3,0),B(0,﹣4),
∵抛物线y=x2+bx+c恰好经过这两点.
∴,
解得,
∴y=﹣x﹣4;
(2)①∵将△ACO绕着点C逆时针旋转90°得到△ECF,
∴∠OCF=90°,CF=CO=6,EF=AO=3,EF∥y轴,
∴E(6,3),
当x=6时,y==3,
∴点E在抛物线上;
②过点E作EH⊥AB,交y轴于P,垂足为H,
∵A(﹣3,0),B(0,﹣4),
∴OA=3,OB=4,
∴AB=5,
∵sin∠ABO=,
∴HP=BP,
∴BP+EP=HP+PE,
∴HP+PE的最小值为EH的长,
作EG⊥y轴于G,
∵∠GEP=∠ABO,
∴tan∠EPG=tan∠ABO,
∴,
∴,
∴PG=,
∴OP=﹣3=,
∴P(0,﹣).
【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式,旋转的性质,三角函数,两点之间、线段最短等知识,利用三角函数将BP转化为HP的长是解题的关键.
29.(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.
(1)求此抛物线的解析式.
(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.
(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.
①求m的值.
②以PA为边作等腰直角三角形PAQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.
【分析】(1)通过待定系数法求解.
(2)令y=0,求出抛物线与x轴交点坐标,结合图象求解.
(3)①分类讨论点P在抛物线对称轴右侧及左侧两种情况,分别求出顶点为最低点和点P为最低点时m的值.
②根据m的值,作出等腰直角三角形求解.
【解答】解:(1)将(1,0),(0,3)代入y=x2+bx+c得,
解得,
∴y=x2﹣4x+3.
(2)令x2﹣4x+3=0,
解得x1=1,x2=3,
∴抛物线与x轴交点坐标为(1,0),(3,0),
∵抛物线开口向上,
∴m<1或m>3时,点P在x轴上方.
(3)①∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线顶点坐标为(2,﹣1),对称轴为直线x=2,
当m>2时,抛物线顶点为最低点,
∴﹣1=2﹣m,
解得m=3,
当m≤2时,点P为最低点,
将x=m代入y=x2﹣4x+3得y=m2﹣4m+3,
∴m2﹣4m+3=2﹣m,
解得m1=(舍),m2=.
∴m=3或m=.
②当m=3时,点P在x轴上,AP=2,
∵抛物线顶点坐标为(2,﹣1),
∴点Q坐标为(2,﹣1)或(2,1)符合题意.
当m=时,如图,∠QPA=90°过点P作y轴平行线,交x轴于点F,作QE⊥PF于点E,
∵∠QPE+∠APF=∠APF+∠PAF=90°,
∴∠QPE=∠PAF,
又∵∠QEP=∠PFA=90°,QP=PA,
∴△QEP≌△PFA(AAS),
∴QE=PA,即2﹣m=m2﹣4m+3,
解得m1=(舍),m2=.
∴PF=2﹣,AF=PE=1﹣,
∴EF=PF+PE=2﹣+1﹣=,
∴点Q坐标为(2,).
综上所述,点Q坐标为(2,﹣1)或(2,1)或(2,).
【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过数形结合求解.
30.(2022•包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.
(1)求该抛物线的解析式;
(2)如图1,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;
(3)如图2,直线BM与y轴交于点H,是否存在点M,使得2OH﹣OG=7.若存在,求出点M的坐标;若不存在,请说明理由.
【分析】(1)用待定系数法求出解析式即可;
(2)过点M作MD⊥y轴,垂足为D,根据面积关系得出OA=2MD,设M点的坐标为(m,﹣m2+4),求出M点的坐标,用待定系数法求出直线AM的解析式,根据C点坐标求出直线CN的解析式,确定N点的坐标,即可得出结论;
(3)过点M作ME⊥x轴,垂足为E,令M(m,﹣m2+4),用m的代数式表示出OE和ME,利用三角函数得出OH和OG的代数式,根据2OH﹣OG=7,得出关于m的方程,求出m的值即可得出M点的坐标.
【解答】解:(1)∵抛物线y=ax2+c(a≠0)与x轴交于(2,0),顶点C的坐标是(0,4),
∴,
解得,
∴该抛物线的解析式为y=﹣x2+4;
(2)证明:过点M作MD⊥y轴,垂足为D,
当△AOG与△MOG都以OG为底时,
∵S1=2S2,
∴OA=2MD,
当y=0时,则﹣x2+4=0,
解得x=±2,
∵B(2,0),
∴A(﹣2,0),
∴OA=2,MD=1,
设M点的坐标为(m,﹣m2+4),
∵点M在第一象限,
∴m=1,
∴﹣m2+4=3,
即M(1,3),
设直线AM的解析式为y=kx+b,
∴,
解得,
∴直线AM的解析式为y=x+2,
∵CN∥AM,
∴设直线CN的解析式为y=x+t,
∵C(0,4),
∴t=4,
即直线CN的解析式为y=x+4,将其代入y=﹣x2+4中,
得x+4=﹣x2+4,
解得x=0或﹣1,
∵N点在第二象限,
∴N(﹣1,3),
∵M(1,3),
∴点N与点M关于y轴对称;
(3)过点M作ME⊥x轴,垂足为E,令M(m,﹣m2+4),
∴OE=m,ME=﹣m2+4,
∵B(2,0),
∴OB=2,BE=2﹣m,
在Rt△BEM和Rt△BOH中,
∵tan∠MBE=tan∠HBO,
∴,
∴OH===2(2+m)=2m+4,
∵OA=2,
∴AE=m+2,
在Rt△AOG和Rt△AEM中,
∵tan∠GAO=tan∠MAE,
∴,
∴OG===2(2﹣m)=4﹣2m,
∵2OH﹣OG=7,
∴2(2m+4)﹣(4﹣2m)=7,
解得m=,
当m=时,﹣m2+4=,
∴M(,),
∴存在点M(,),使得2OH﹣OG=7.
【点评】本题主要考查二次函数的图象和性质,熟练掌握待定系数法求函数解析式,二次函数的性质,三角函数,一次函数的性质等知识是解题的关键.
31.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
【分析】(1)根据抛物线的对称轴为直线x=2,可得出抛物线与x轴的另一个交点的坐标为(﹣2,0),列出交点式,再将点A(0,﹣4)可得出抛物线的解析式;
(2)根据可得出△ABD是等腰直角三角形,再根据点E的运动和正方形的性质可得出点H,F,G的坐标,根据点B,C的坐标可得出直线BC的解析式,将点G代入直线BC的解析式即可;
(3)若存在,则△BGC是直角三角形,则需要分类讨论,当点B为直角顶点,当点G为直角顶点,当点C为直角顶点,分别求解即可.
【解答】解:(1)∵抛物线的对称轴为直线x=2,D点的坐标为(4,0),
∴抛物线与x轴的另一个交点为(﹣2,0),
∴抛物线的解析式为:y=a(x+2)(x﹣6),
将点A(0,﹣4)解析式可得,﹣12a=﹣4,
∴a=.
∴抛物线的解析式为:y=(x+2)(x﹣6)=x2﹣x﹣4.
(2)∵AB⊥y轴,A(0,﹣4),
∴点B的坐标为(4,﹣4).
∵D(4,0),
∴AB=BD=4,且∠ABD=90°,
∴△ABD是等腰直角三角形,∠BAD=45°.
∵EF⊥AB,
∴∠AFE=90°,
∴△AEF是等腰直角三角形.
∵AE=m,
∴AF=EF=m,
∴E(m,﹣4+m),F(m,﹣4).
∵四边形EGFH是正方形,
∴△EHF是等腰直角三角形,
∴∠HEF=∠HFE=45°,
∴FH是∠AFE的角平分线,点H是AE的中点.
∴H(m,﹣4+m),G(m,﹣4+m).
∵B(4,﹣4),C(6,0),
∴直线BC的解析式为:y=2x﹣12.
当点G随着E点运动到达BC上时,有2×m﹣12=﹣4+m.
解得m=.
∴G(,﹣).
(3)存在,理由如下:
∵B(4,﹣4),C(6,0),G(m,﹣4+m).
∴BG2=(4﹣m)2+(m)2,
BC2=(4﹣6)2+(﹣4)2=20,
CG2=(6﹣m)2+(﹣4+m)2.
若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,
∴分以下三种情况:
①当点B为直角顶点时,BG2+BC2=CG2,
∴(4﹣m)2+(m)2+20=(6﹣m)2+(﹣4+m)2,
解得m=,
∴G(,﹣);
②当点C为直角顶点时,BC2+CG2=BG2,
∴20+(6﹣m)2+(﹣4+m)2=(4﹣m)2+(m)2,
解得m=,
∴G(,);
③当点G为直角顶点时,BG2+CG2=BC2,
∴(4﹣m)2+(m)2+(6﹣m)2+(﹣4+m)2=20,
解得m=或2,
∴G(3,﹣3)或(,);
综上,存在以B,G,C和平面内的另一点为顶点的四边形是矩形,点G的坐标为(,﹣)或(,)或(3,﹣3)或(,).
【点评】本题属于二次函数综合题,主要考查待定系数法求函数解析式,正方形的性质与判定,矩形的性质与判定,等腰直角三角形的性质与判定,分类讨论等知识,解题关键是由点E的坐标得出点H,F,G的坐标.本题第(3)问当点B和点C为直角顶点时,也可通过一次函数和几何结合求解.
32.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
(1)求b的值;
(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.
【分析】(1)由二次函数的对称轴直接可求b的值;
(2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于斜边的一半,列出方程即可求解;
②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;
(3)通过画函数的图象,分类讨论求解即可.
【解答】解:(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,
∴b=﹣4;
(2)如图1:①令x2+bx+m=0,
解得x=2﹣或x=2+,
∵M在N的左侧,
∴M(2﹣,0),N(2+,0),
∴MN=2,MN的中点坐标为(2,0),
∵△MNP为直角三角形,
∴=,
解得m=0(舍)或m=﹣1;
②∵m=﹣1,
∴y=x2﹣4x﹣1(x≥0),
令x2﹣4x﹣1=﹣4,
解得x=1或x=3,
∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),
∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),
当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,
∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),
∴﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;
(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),
如图2,当=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,
解得m=﹣4,
∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,
∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,
∴m=﹣4时,当线段AB与图象C恰有两个公共点;
如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,
此时图象C与线段AB有三个公共点,
∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;
如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,
此时图象C与线段AB有三个公共点,
如图5,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,
解得m=3,
此时图象C与线段AB有一个公共点,
∴1<m<3时,线段AB与图象C恰有两个公共点;
综上所述:﹣4≤m<﹣1或1<m<3时,线段AB与图象C恰有两个公共点.
,
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,图形翻折的性质,分类讨论,数形结合是解题的关键.
33.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.
(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;
②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;
(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.
【分析】(1)①由题意求出M=6066,N=2022,再由定义可求h的值;
②分两种情况讨论:②当k>0时,M=kt+k+b,N=kt﹣k+b,h=k;当k<0时,M=kt﹣k+b,有N=kt+k+b,h=﹣k;
(2)由题意t﹣≥1,M=,N=,则h=,所以h有最大值;
(3)分四种情况讨论:①当2≤t﹣时,M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,h=t﹣2;②当t+≤2时,N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,h=2﹣t,;③当t﹣≤2≤t,即2≤t≤,N=﹣(t+﹣2)2+4+k,M=4+k,h=(t﹣)2;④当t<2≤t+,N=﹣(t﹣﹣2)2+4+k,M=4+k,h=(t﹣)2,画出h的函数图象,结合图象可得=4+k,解得k=﹣.
【解答】解:(1)①∵t=1,
∴≤x≤,
∵函数y=4044x,
∴函数的最大值M=6066,函数的最小值N=2022,
∴h=2022;
②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt﹣k+b,
∴h=k;
当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N=kt+k+b,
∴h=﹣k;
综上所述:h=±k;
(2)t﹣≥1,即t≥,
函数y=(x≥1)最大值M=,最小值N=,
∴h=,
当t=时,h有最大值;
(3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:
∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,
∴函数的对称轴为直线x=2,y的最大值为4+k,
①当2≤t﹣时,即t≥,
此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,
∴h=t﹣2,
此时h的最小值为;
②当t+≤2时,即t≤,
此时N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,
∴h=2﹣t,
此时h的最小值为;
③当t﹣≤2≤t,即2≤t≤,
此时N=﹣(t+﹣2)2+4+k,M=4+k,
∴h=(t﹣)2,
④当t<2≤t+,即≤t<2,
此时N=﹣(t﹣﹣2)2+4+k,M=4+k,
∴h=(t﹣)2,
h的函数图象如图所示:h的最小值为,
由题意可得=4+k,
解得k=﹣;
综上所述:k的值为﹣.
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,根据定义结合所学的一次函数、反比例函数、二次函数的图象及性质综合解题,分类讨论是解题的关键.
34.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.
(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;
(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?
【分析】(1)根据题意,得y=200﹣×4(x﹣48),化简即可;
(2)根据题意,得W=(x﹣34)(﹣2x+296),化成顶点式,再根据二次函数的性质求出最大值.
【解答】解:(1)根据题意,得y=200﹣×4(x﹣48)
=﹣2x+296,
∴y与x之间的函数关系式:y=﹣2x+296;
(2)根据题意,得W=(x﹣34)(﹣2x+296)
=﹣2(x﹣91)2+6498,
∵a=﹣2<0,
∴抛物线开口向下,W有最大值,
当x=91时,W最大值=6498,
答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元.
【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).
35.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
【分析】设与墙垂直的一边长为xm,然后根据矩形面积列函数关系式,从而利用二次函数的性质求其最值.
【解答】解:设矩形鸡场与墙垂直的一边长为xm,则与墙平行的一边长为(47﹣2x+1)m,由题意可得:
y=x(47﹣2x+1),
即y=﹣2(x﹣12)2+288,
∵﹣2<0,
∴当x=12时,y有最大值为288,
当x=12时,47﹣x﹣(x﹣1)=24<25(符合题意),
∴鸡场的最大面积为288m2.
【点评】本题考查二次函数的应用,理解题意,掌握二次函数的性质是解题关键.
36.(2022•湖北)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:
销售单价x(元/千克)
…
20
22.5
25
37.5
40
…
销售量y(千克)
…
30
27.5
25
12.5
10
…
(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;
(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).
①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;
②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.
【分析】(1)描点,用平滑曲线连接这些点即可得出函数图象是一次函数,待定系数法求解可得;
(2)①根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;
②根据题意列方程,解方程即可得到结论.
【解答】解:(1)如图,
设y=kx+b,
把(20,30)和(25,25)代入y=kx+b中得:
,
解得:,
∴y=﹣x+50;
(2)①w=(x﹣18)(﹣x+50)=﹣x2+68x﹣900=﹣(x﹣34)2+256,
∵﹣1<0,
∴当x=34时,w有最大值,
即超市每天销售这种商品获得最大利润时,销售单价为34元;
②当w=240时,﹣(x﹣34)2+256=240,
(x﹣34)2=16,
∴x1=38,x2=30,
∵超市本着“尽量让顾客享受实惠”的销售原则,
∴x=30.
【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.
37.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.
(1)求点B的坐标及直线AC的解析式;
(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;
(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;
(2)分四种情况讨论:①当m>1时,p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,p﹣q=m2﹣2m﹣3+4=2,解得m=+1(舍)或m=﹣+1;
(3)分两种情况讨论:①当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,求出直线BA的解析式为y=x﹣5,联立方程组,由Δ=0时,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②当抛物线向右平移k个单位,则向下平移k个单位,平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,由此可求解.
【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点A(1,﹣4),
令x=0,则y=﹣3,
∴C(0,﹣3),
∵CB∥x轴,
∴B(2,﹣3),
设直线AC解析式为y=kx+b,
,
解得,
∴y=﹣x﹣3;
(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,
①当m>1时,
x=m时,q=m2﹣2m﹣3,
x=m+2时,p=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,
解得m=(舍);
②当m+2<1,即m<﹣1,
x=m时,p=m2﹣2m﹣3,
x=m+2时,q=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,
解得m=﹣(舍);
③当m≤1≤m+1,即0≤m≤1,
x=1时,q=﹣4,
x=m+2时,p=(m+2)2﹣2(m+2)﹣3,
∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,
解得m=﹣1或m=﹣﹣1(舍);
④当m+1<1≤m+2,即﹣1≤m<0,
x=1时,q=﹣4,
x=m时,p=m2﹣2m﹣3,
∴p﹣q=m2﹣2m﹣3+4=2,
解得m=+1(舍)或m=﹣+1,
综上所述:m的值﹣1或+1;
(3)设直线AC的解析式为y=kx+b,
∴,
解得,
∴y=﹣x﹣3,
①如图1,当抛物线向左平移h个单位,则向上平移h个单位,
∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,
设直线BA的解析式为y=k'x+b',
∴,
解得,
∴y=x﹣5,
联立方程组,
整理得x2﹣(3﹣2h)x+h2﹣h+2=0,
当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,
解得h=,
此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;
②如图2,当抛物线向右平移k个单位,则向下平移k个单位,
∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,
当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,
解得k=0(舍)或k=3,
此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,
当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,
∴综上所述:1<n≤4或n=.
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合,分类讨论是解题的关键.
38.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36m2,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
【分析】(1)根据题意知:较大矩形的宽为2xm,长为=(8﹣x) m,可得(x+2x)×(8﹣x)=36,解方程取符合题意的解,即可得x的值为2m;
(2)设矩形养殖场的总面积是ym2,根据墙的长度为10,可得0<x≤,而y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,由二次函数性质即得当x=时,矩形养殖场的总面积最大,最大值为m2.
【解答】解:(1)根据题意知:较大矩形的宽为2xm,长为=(8﹣x) m,
∴(x+2x)×(8﹣x)=36,
解得x=2或x=6,
经检验,x=6时,3x=18>10不符合题意,舍去,
∴x=2,
答:此时x的值为2m;
(2)设矩形养殖场的总面积是ym2,
∵墙的长度为10,
∴0<x≤,
根据题意得:y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,
∵﹣3<0,
∴当x=时,y取最大值,最大值为﹣3×(﹣4)2+48=(m2),
答:当x=时,矩形养殖场的总面积最大,最大值为m2.
【点评】本题考查一元二次方程和二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.
39.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
【分析】(1)可用待定系数法来确定y与x之间的函数关系式,根据图象可得x的取值范围即可;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.
【解答】解:(1)设函数解析式为y=kx+b,由题意得:
,
解得:,
∴y=﹣5x+500,
当y=0时,﹣5x+500=0,
∴x=100,
∴y与x之间的函数关系式为y=﹣5x+500(50<x<100的小数位数只有一位且小数部分为偶数的数);
(2)设销售利润为w元,
w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,
∵抛物线开口向下,
∴50<x<100,
∴当x=75时,w有最大值,是3125,
∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.
【点评】本题考查了一次函数的应用,二次函数的最值问题,在本题中,还需注意的是自变量的取值范围.
40.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
【分析】(1)把点B(2,0)代入y=﹣2x2+bx+c中,再由对称轴是直线x=列方程,两个方程组成方程组可解答;
(2)当△POD是等边三角形时,点P在OD的垂直平分线上,所以作OD的垂直平分线与抛物线的交点即为点P,计算OD≠PD,可知△POD不可能是等边三角形;
(3)分种情况:①当PC∥x轴时,△CPM∽△BHM时,根据PH的长列方程可解答;②②如图3,△PCM∽△BHM,过点P作PE⊥y轴于E,证明△PEC∽△COB,可得结论.
【解答】解:(1)由题意得:,
解得:,
∴抛物线的解析式为:y=﹣2x2+2x+4;
(2)△POD不可能是等边三角形,理由如下:
如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,
∵C(0,4),D是OD的中点,
∴E(0,1),
当y=1时,﹣2x2+2x+4=1,
2x2﹣2x﹣3=0,
解得:x1=,x2=(舍),
∴P(,1),
∴OD≠PD,
∴△POD不可能是等边三角形;
(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,
分两种情况:
①如图2,△CMP∽△BMH,
∴∠PCM=∠OBC,∠BHM=∠CPM=90°,
∴tan∠OBC=tan∠PCM,
∴====2,
∴PM=2PC=2t,MH=2BH=2(2﹣t),
∵PH=PM+MH,
∴2t+2(2﹣t)=﹣2t2+2t+4,
解得:t1=0,t2=1,
∴P(1,4);
②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,
过点P作PE⊥y轴于E,
∴∠PEC=∠BOC=∠PCM=90°,
∴∠PCE+∠EPC=∠PCE+∠BCO=90°,
∴∠BCO=∠EPC,
∴△PEC∽△COB,
∴=,
∴=,
解得:t1=0(舍),t2=,
∴P(,);
综上,点P的坐标为(1,4)或(,).
【点评】本题是二次函数的综合题,涉及待定系数法,等边三角形的判定,相似三角形性质和判定,三角函数等知识,解题的关键是运用分类讨论的思想解决以P,M,C为顶点的三角形与△BMH相似的情况.
41.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;
(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.
【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,
∴B(﹣3,0),
∴,
解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,
设P(m,0),则PA=1﹣m,
∵y=x2+2x﹣3=(x+1)2﹣4,
∴C(﹣1,﹣4),
∴CF=4,
∵PQ∥BC,
∴△PQA∽△BCA,
∴,即,
∴QE=1﹣m,
∴S△CPQ=S△PCA﹣S△PQA
=PA•CF﹣PA•QE
=(1﹣m)×4﹣(1﹣m)(1﹣m)
=﹣(m+1)2+2,
∵﹣3≤m≤1,
∴当m=﹣1时 S△CPQ有最大值2,
∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).
【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.
42.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;
(2)①构建方程即可求出该产品第一年的售价;
②根据题意求出自变量的取值范围,再根据二次函数性质即可解决问题;
【解答】解:(1)根据题意得:w=(x﹣8)(24﹣x)﹣60=﹣x2+32x﹣252;
(2)①∵该产品第一年利润为4万元,
∴4=﹣x2+32x﹣252,
解得:x=16,
答:该产品第一年的售价是16元.
②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,
∴,
解得11≤x≤16,
设第二年利润是w'万元,
w'=(x﹣6)(24﹣x)﹣4=﹣x2+30x﹣148,
∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,
∴x=11时,w'有最小值,最小值为(11﹣6)×(24﹣11)﹣4=61(万元),
答:第二年的利润至少为61万元.
【点评】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.
43.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;
(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.
【解答】解:(1)由题意知,抛物线顶点为(5,3.2),
设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:
0.7=25a+3.2,
解得a=﹣,
∴y=﹣(x﹣5)2+3.2=﹣x2+x+,
答:抛物线的表达式为y=﹣x2+x+;
(2)当y=1.6时,﹣x2+x+=1.6,
解得x=1或x=9,
∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),
答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.
【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.
44.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:
(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;
(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?
【分析】(1)设水池的长为am,根据Ⅰ、Ⅱ两块矩形面积减水池面积等于种植面积列方程求解即可得出结论;
(2)设BC长为xm,则CD长度为21﹣3x,得出面积关于x的关系式,利用二次函数的性质求最值即可.
【解答】解:(1)∵(21﹣12)÷3=3(m),
∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),
设水池的长为am,则水池的面积为a×1=a(m2),
∴36﹣a=32,
解得a=4,
∴DG=4m,
∴CG=CD﹣DG=12﹣4=8(m),
即CG的长为8m、DG的长为4m;
(2)设BC长为xm,则CD长度为21﹣3x,
∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x﹣)2+,
∵﹣3<0,
∴当x=时,总种植面积有最大值为m2,
即BC应设计为m总种植面积最大,此时最大面积为m2.
【点评】本题主要考查二次函数的应用,熟练根据二次函数的性质求最值是解题的关键.
45.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
第x天
1
2
…
6
…
11
…
15
供应量y1(个)
150
150+m
…
150+5m
…
150+10m
…
150+14m
需求量y2(个)
220
229
…
245
…
220
…
164
(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
【分析】(1)由已知直接可得y1=150+(x﹣1)m=mx+150﹣m,设y2=ax2+bx+c,用待定系数法可得y2=﹣x2+12x+209;
(2)求出前9天的总供应量为(1350+36m)个,前10天的供应量为(1500+45m)个,根据前9天的总需求量为2136个,前10天的总需求量为2136+229=2365(个),可得,而m为正整数,即可解得m的值为20或21;
(3)m最小值为20,从而第4天的销售量即供应量为y1=210,销售额为21000元,第12天的销售量即需求量为y2=209,销售额为20900元.
【解答】解:(1)根据题意得:y1=150+(x﹣1)m=mx+150﹣m,
设y2=ax2+bx+c,将(1,220),(2,229),(6,245)代入得:
,
解得,
∴y2=﹣x2+12x+209;
(2)前9天的总供应量为150+(150+m)+(150+2m)+......+(150+8m)=(1350+36m)个,
前10天的供应量为1350+36m+(150+9m)=(1500+45m)个,
在y2=﹣x2+12x+209中,令x=10得y=﹣102+12×10+209=229,
∵前9天的总需求量为2136个,
∴前10天的总需求量为2136+229=2365(个),
∵前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量,
∴,
解得19≤m<21,
∵m为正整数,
∴m的值为20或21;
(3)由(2)知,m最小值为20,
∴第4天的销售量即供应量为y1=4×20+150﹣20=210,
∴第4天的销售额为210×100=21000(元),
而第12天的销售量即需求量为y2=﹣122+12×12+209=209,
∴第12天的销售额为209×100=20900(元),
答:第4天的销售额为21000元,第12天的销售额为20900元.
【点评】本题考查二次函数,一次函数的应用,解题的关键是读懂题意,列出函数关系式和不等式组解决问题.
46.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
【分析】(1)分段利用图象的特点,利用待定系数法,即可求出答案;
(2)先求出x的范围;
①分两段建立w与x的函数关系,即可求出各自的w的最小值,最后比较,即可求出答案案;
②分两段利用w≤6000,建立不等式求解,即可求出答案.
【解答】解:(1)当0<x≤40时,y=30;
当40<x≤100时,
设函数关系式为y=kx+b,
∵线段过点(40,30),(100,15),
∴,
∴,
∴y=﹣x+40,
即y=;
(2)∵甲种花卉种植面积不少于30m2,
∴x≥30,
∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,
∴360﹣x≥3x,
∴x≤90,
即30≤x≤90;
①当30≤x≤40时,
由(1)知,y=30,
∵乙种花卉种植费用为15元/m2.
∴w=yx+15(360﹣x)=30x+15(360﹣x)=15x+5400,
当x=30时,wmin=5850;
当40<x≤90时,
由(1)知,y=﹣x+40,
∴w=yx+15(360﹣x)=﹣(x﹣50)2+6025,
∴当x=90时,wmin=﹣(90﹣50)2+6025=5625,
∵5850>5625,
∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;
②当30≤x≤40时,
由①知,w=15x+5400,
∵种植总费用不超过6000元,
∴15x+5400≤6000,
∴x≤40,
即满足条件的x的范围为30≤x≤40,
当40<x≤90时,
由①知,w=﹣(x﹣50)2+6025,
∵种植总费用不超过6000元,
∴﹣(x﹣50)2+6025≤6000,
∴x≤40(不符合题意,舍去)或x≥60,
即满足条件的x的范围为60≤x≤90,
综上,满足条件的x的范围为30≤x≤40或60≤x≤90.
【点评】此题主要考查了二次函数的应用,待定系数法求函数解析式,函数极值的确定,用分段讨论的思想解决问题是解本题的关键.
相关试卷
这是一份2020年中考数学真题分项汇编专题12二次函数压轴解答题 (含解析),共107页。试卷主要包含了三点,综合与探究等内容,欢迎下载使用。
这是一份2022年中考数学试题汇编:二次函数(选择题)(含解析),共47页。试卷主要包含了的图象如图所示,有下列5个结论等内容,欢迎下载使用。
这是一份2022年中考数学试题汇编:二次函数(填空题)(含解析),共19页。试卷主要包含了两点,且1<m<2等内容,欢迎下载使用。