2022年宁夏省石嘴山市中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如果,那么的值为( )
A.1 B.2 C. D.
2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
3.下列式子成立的有( )个
①﹣的倒数是﹣2
②(﹣2a2)3=﹣8a5
③()=﹣2
④方程x2﹣3x+1=0有两个不等的实数根
A.1 B.2 C.3 D.4
4.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
5.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
A.﹣8 B.﹣4 C.4 D.8
6.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )
A.150° B.140° C.130° D.120°
7.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
A.相交 B.内切 C.外离 D.内含
8.下列运算正确的是( )
A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
9.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( )
①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)
A.1个 B.2个 C.3个 D.4个
10.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
11.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )
A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
12.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )
A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .
14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
15.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,yB)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则yB的取值范围是_________.
16.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.
17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .
18.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.
20.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
1
根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
21.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
(1)求证:DF是BF和CF的比例中项;
(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
22.(8分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
分组
频数
频率
0.5~50.5
0.1
50.5~
20
0.2
100.5~150.5
200.5
30
0.3
200.5~250.5
10
0.1
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
23.(8分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
24.(10分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
25.(10分)如图,点在线段上,,,.求证:.
26.(12分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
27.(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
2、B
【解析】
分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
详解:画树状图,得
∴共有8种情况,经过每个路口都是绿灯的有一种,
∴实际这样的机会是.
故选B.
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
3、B
【解析】
根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.
【详解】
解:①﹣的倒数是﹣2,故正确;
②(﹣2a2)3=﹣8a6,故错误;
③(-)=﹣2,故错误;
④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.
故选B.
【点睛】
考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.
4、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
5、B
【解析】
根据反比例函数的图象和性质结合矩形和三角形面积解答.
【详解】
解:作,连接.
∵四边形AHEB,四边形ECOH都是矩形,BE=EC,
∴
故选B.
【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
6、A
【解析】
直接根据圆周角定理即可得出结论.
【详解】
∵A、B、C是⊙O上的三点,∠B=75°,
∴∠AOC=2∠B=150°.
故选A.
7、A
【解析】
试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,
∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.
故选A.
考点:圆与圆的位置关系.
8、D
【解析】
根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
根据同底数幂相乘,可知a2•a3=a5,故不正确;
根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
故选D.
【详解】
请在此输入详解!
9、C
【解析】
①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
【详解】
解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
∴,
故 ①正确;
②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
∵DE=1,OA'=1,
∴S△AED=×1×1=,
∵OE∥AA'∥GB',OA'=A'B',
∴AE=AG,
∴△AED∽△AGB且相似比=1,
∴△AED≌△AGB,
∴S△ABG=,
同理得:G为AC中点,
∴S△ABG=S△BCG=,
∴S△ABC=1,
故 ②正确;
③由②知:△AED≌△AGB,
∴BG=DE=1,
∵BG∥EF,
∴△BGC∽△FEC,
∴,
∴EF=1.即OF=5,
故③正确;
④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
故④错误;
故选C.
【点睛】
本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
10、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
11、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
∵3804.2千=3804200,
∴3804200=3.8042×106;
故选:C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、B
【解析】
全组有x名同学,则每名同学所赠的标本为:(x-1)件,
那么x名同学共赠:x(x-1)件,
所以,x(x-1)=132,
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①②④.
【解析】
①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
故一定正确的是①②④
14、40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
15、ya≥1
【解析】
设点A的坐标为(m,n),由题意可知n=m1,从而可知抛物线C为y=(x-m)1+n,化简为y=x1-1mx+1m1,将x=1代入y=x1-1mx+1m1,利用二次函数的性质即可求出答案.
【详解】
设点A的坐标为(m,n),m为全体实数,
由于点A在抛物线y=x1上,
∴n=m1,
由于以A为顶点的抛物线C为y=x1+bx+c,
∴抛物线C为y=(x-m)1+n
化简为:y=x1-1mx+m1+n=x1-1mx+1m1,
∴令x=1,
∴ya=4-4m+1m1=1(m-1)1+1≥1,
∴ya≥1,
故答案为ya≥1
【点睛】
本题考查了二次函数的性质,解题的关键是根据题意求出ya=4-4m+1m1=1(m-1)1+1.
16、4
【解析】
∵点C是线段AD的中点,若CD=1,
∴AD=1×2=2,
∵点D是线段AB的中点,
∴AB=2×2=4,
故答案为4.
17、
【解析】
设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得
所以
18、.
【解析】
连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.
【详解】
解:连接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中, ,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:.
故答案为:.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1.
【解析】
根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.
【详解】
解:原式=1﹣1+3﹣4×=1.
【点睛】
本题考查实数的运算及特殊角三角形函数值.
20、(1)41(2)15%(3)
【解析】
(1)用散文的频数除以其频率即可求得样本总数;
(2)根据其他类的频数和总人数求得其百分比即可;
(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
【详解】
(1)∵喜欢散文的有11人,频率为1.25,
∴m=11÷1.25=41;
(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
故答案为15%;
(3)画树状图,如图所示:
所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
∴P(丙和乙)==.
21、证明见解析
【解析】
试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
由(1)可得 ,从而得 ,问题得证.
试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中点,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.
22、⑴表格中依次填10,100.5,25,0.25,150.5,1;
⑵0.25,100;
⑶1000×(0.3+0.1+0.05)=450(名).
【解析】
(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
【详解】
解:填表如下:
(2)长方形ABCD的面积为0.25,样本容量是100;
提出这项建议的人数人.
【点睛】
本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
23、30.3米.
【解析】
试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
试题解析:过点D作DE⊥AB于点E,
在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
∴AB=AE+BE≈23.1+7.2=30.3米.
24、1
【解析】解:
取时,原式.
25、证明见解析
【解析】
若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.
【详解】
∵DE//BC
∴∠ABC=∠BDE
在△ABC与△EDB中
,
∴△ABC≌△EDB(SAS)
∴∠A=∠E
26、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
27、见解析
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥DC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
∴△AEO≌△CFO(ASA),
∴OE=OF.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
宁夏石嘴山市星海中学2022年中考考前最后一卷数学试卷含解析: 这是一份宁夏石嘴山市星海中学2022年中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了已知二次函数y=3,四组数中等内容,欢迎下载使用。
2022年宁夏石嘴山市名校中考数学考前最后一卷含解析: 这是一份2022年宁夏石嘴山市名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年林芝中考考前最后一卷数学试卷含解析: 这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。