2022年宁夏大附中中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()
A.30° B.40°
C.60° D.70°
2.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )
A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
3.的相反数是
A. B.2 C. D.
4.如图是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.
根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)( ).
A.10 cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
5.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )
A.70° B.50° C.40° D.35°
6.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是( )
A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)
7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
8.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
10.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.
12.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
13.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.
14.方程的解为__________.
15.不等式组的解集是 _____________.
16.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.
三、解答题(共8题,共72分)
17.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
18.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
19.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
20.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
21.(8分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
22.(10分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表
x
﹣1
1
1
3
y
﹣1
3
5
3
下列结论:
①ac<1;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=1的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>1.
其中正确的结论是 .
23.(12分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
24.如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
∵AB∥CD,∠A=70°,
∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,
∴∠E=∠1﹣∠C=70°﹣40°=30°.
故选A.
2、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将27100用科学记数法表示为:. 2.71×104.
故选:C.
【点睛】
本题考查科学记数法—表示较大的数。
3、B
【解析】
根据相反数的性质可得结果.
【详解】
因为-2+2=0,所以﹣2的相反数是2,
故选B.
【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
4、C
【解析】
分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
详解:设玻璃球的体积为x,则有
解得30<x<1.
故一颗玻璃球的体积在30cm3以上,1cm3以下.
故选C.
点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
5、B
【解析】
分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
详解:∵OE是∠BOC的平分线,∠BOC=80°,
∴∠COE=∠BOC=×80°=40°,
∵OD⊥OE
∴∠DOE=90°,
∴∠DOC=∠DOE-∠COE=90°-40°=50°,
∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
故选B.
点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
6、D
【解析】
首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
【详解】
解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
故选D.
【点睛】
此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
7、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
8、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
9、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
10、A
【解析】
直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.
【详解】
解:设原来的平均车速为xkm/h,则根据题意可列方程为:
﹣=1.
故选A.
【点睛】
本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
详解:∵点G是△ABC重心,BC=6,
∴CD=BC=3,AG:AD=2:3,
∵GE∥BC,
∴△AEG∽△ADC,
∴GE:CD=AG:AD=2:3,
∴GE=2.
故答案为2.
点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
12、1.
【解析】
由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
【详解】
∵PA,PB是⊙O是切线,
∴PA=PB.
又∵∠P=46°,
∴∠PAB=∠PBA=.
又∵PA是⊙O是切线,AO为半径,
∴OA⊥AP.
∴∠OAP=90°.
∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
故答案为:1
【点睛】
此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
13、2
【解析】
连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
【详解】
连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠OCP=90°,
∵PC=2,OC=2,
∴OP===4,
∴∠OPC=30°,
∴∠COP=60°,
∵OC=OB=2,
∴△OCB是等边三角形,
∴BC=OB=2,
故答案为2
【点睛】
本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
14、
【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.
【详解】
解:两边同时乘,得
,
解得,
检验:当时,≠0,
所以x=1是原分式方程的根,
故答案为:x=1.
【点睛】
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
15、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
16、1
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.
【详解】
∵DM垂直平分AC,
∴AD=CD,
∴∠DAC=∠C=28°,
∴∠ADB=∠C+∠DAC=28°+28°=56°,
∵AB=BD,
∴∠ADB=∠BAD=56°,
在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.
故答案为1.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.
三、解答题(共8题,共72分)
17、(1)50;(2)16;(3)56(4)见解析
【解析】
(1)用A等级的频数除以它所占的百分比即可得到样本容量;
(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
【详解】
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
所以抽取的两人恰好都是男生的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
18、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.
【解析】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
【详解】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,
由题意得:,
解得:,
则甲,乙两种型号设备每台的价格分别为12万元和10万元;
(2)设购买甲型设备台,乙型设备台,
则,
∴,
∵取非负整数,
∴,
∴有6种购买方案;
(3)由题意:,
∴,
∴为4或5,
当时,购买资金为:(万元),
当时,购买资金为:(万元),
则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.
19、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
【点睛】
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
20、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)D与P重合时有最小值,求出点D的坐标即可;
(3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,且顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
(2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
∴当点P与点D重合时,PO+PC的值最小,
设直线AC的解析式为y=kx+b,
根据题意,得解得
∴直线AC的解析式为,
当x=2时,,
∴当PO+PC的值最小时,点P的坐标为(2,);
(3)存在.
①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
【点睛】
二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
21、(1);(2)的值为.
【解析】
(1)利用判别式的意义得到,然后解不等式即可;
(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.
【详解】
解:(1)根据题意得,
解得;
(2)的最大整数为2,
方程变形为,解得,
∵一元二次方程与方程有一个相同的根,
∴当时,,解得;
当时,,解得,
而,
∴的值为.
【点睛】
本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
22、①③④.
【解析】
试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴,
解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;
对称轴为直线,所以,当x>时,y的值随x值的增大而减小,故②错误;
方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,
所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;
﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;
综上所述,结论正确的是①③④.
故答案为①③④.
【考点】二次函数的性质.
23、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
【解析】
试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
试题解析:解:(1)AF=BE,AF⊥BE.
(2)结论成立.
证明:∵四边形ABCD是正方形,
∴BA="AD" =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,
即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(3)结论都能成立.
考点:正方形,等边三角形,三角形全等
24、答案见解析
【解析】
连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.
【详解】
解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,
直线PA,PA′即为所求.
【点睛】
本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.
北京市清华附中2023年中考数学最后冲刺模拟试卷含解析: 这是一份北京市清华附中2023年中考数学最后冲刺模拟试卷含解析,共18页。
江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,若分式的值为零,则x的值是等内容,欢迎下载使用。
2022年宁夏银川市宁夏大附中中考数学考前最后一卷含解析: 这是一份2022年宁夏银川市宁夏大附中中考数学考前最后一卷含解析