2022年山东省日照市莒县市级名校中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( )
A.3 B.4 C. D.
2.单项式2a3b的次数是( )
A.2 B.3 C.4 D.5
3.下列实数0,,,π,其中,无理数共有( )
A.1个 B.2个 C.3个 D.4个
4.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
5.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是( )
A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
6.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
7.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
8.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
A.2人 B.16人
C.20人 D.40人
9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
10.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
11.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )
A. B. C. D.
12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+ )x+c=0(a≠0)的两根之和( )
A.大于0 B.等于0 C.小于0 D.不能确定
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
14.如图,直线a、b相交于点O,若∠1=30°,则∠2=___
15.如图,随机闭合开关,,中的两个,能让两盏灯泡和同时发光的概率为___________.
16.分解因式:ab2﹣9a=_____.
17.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.
18.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
20.(6分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的长.
22.(8分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.
(1)请根据以上信息求出二次函数表达式;
(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
(1)收回问卷最多的一天共收到问卷_________份;
(2)本次活动共收回问卷共_________份;
(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?
24.(10分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
25.(10分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,
(1)求DF的长;
(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
26.(12分)解方程组
27.(12分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
如图所示:
过点O作OD⊥AB于点D,
∵OB=3,AB=4,OD⊥AB,
∴BD=AB=×4=2,
在Rt△BOD中,OD=.
故选C.
2、C
【解析】
分析:根据单项式的性质即可求出答案.
详解:该单项式的次数为:3+1=4
故选C.
点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.
3、B
【解析】
根据无理数的概念可判断出无理数的个数.
【详解】
解:无理数有:,.
故选B.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
4、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
5、A
【解析】
直接利用平移的性质结合轴对称变换得出对应点位置.
【详解】
如图所示:
顶点A2的坐标是(4,-3).
故选A.
【点睛】
此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
6、B
【解析】
易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
【详解】
若点E在BC上时,如图
∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
∴∠CFE=∠AEB,
∵在△CFE和△BEA中,
,
∴△CFE∽△BEA,
由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
∴,
当y=时,代入方程式解得:x1=(舍去),x2=,
∴BE=CE=1,∴BC=2,AB=,
∴矩形ABCD的面积为2×=5;
故选B.
【点睛】
本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
7、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、C
【解析】
先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
【详解】
400×人.
故选C.
【点睛】
考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
9、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
10、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
11、D
【解析】
根据题意列出关系式,去括号合并即可得到结果.
【详解】
解:设小长方形卡片的长为x,宽为y,
根据题意得:x+2y=a,
则图②中两块阴影部分周长和是:
2a+2(b-2y)+2(b-x)
=2a+4b-4y-2x
=2a+4b-2(x+2y)
=2a+4b-2a
=4b.
故选择:D.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
12、C
【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.
【详解】
解:设的两根为x1,x2,
∵由二次函数的图象可知,,
.
设方程的两根为m,n,则
.
故选C.
【点睛】
本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、增大.
【解析】
根据二次函数的增减性可求得答案
【详解】
∵二次函数y=x2
的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
故答案为:增大.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
14、30°
【解析】
因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
解:∵∠1+∠2=180°,
又∠1=30°,
∴∠2=150°.
15、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.
【详解】
解:画树状图得:
由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,
∴能让两盏灯泡同时发光的概率,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
16、a(b+3)(b﹣3).
【解析】
根据提公因式,平方差公式,可得答案.
【详解】
解:原式=a(b2﹣9)
=a(b+3)(b﹣3),
故答案为:a(b+3)(b﹣3).
【点睛】
本题考查了因式分解,一提,二套,三检查,分解要彻底.
17、2
【解析】
由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=即可.
【详解】
由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3
∴圆心角∠AO2O1=60° ∴在Rt△ACO2中,AO2==2.
故答案为2.
【点睛】
本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.
18、1
【解析】
先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.
【详解】
:∵第1个正方形的面积为:1+4××2×1=5=51;
第2个正方形的面积为:5+4××2×=25=52;
第3个正方形的面积为:25+4××2×=125=53;
…
∴第n个正方形的面积为:5n;
∴第2018个正方形的面积为:1.
故答案为1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、每台电脑0.5万元;每台电子白板1.5万元.
【解析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
【详解】
设每台电脑x万元,每台电子白板y万元.
根据题意,得:
解得,
答:每台电脑0.5万元,每台电子白板1.5万元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
20、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
21、(1)见解析(2)7.5
【解析】
(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;
(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.
【详解】
(1)证明:连接OD,
∵DE是切线,
∴∠ODE=90°,
∴∠ADE+∠BDO=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∵OD=OB,
∴∠B=∠BDO,
∴∠A=∠ADE;
(2)连接CD,∵∠A=∠ADE
∴AE=DE,
∵BC是⊙O的直径,∠ACB=90°,
∴EC是⊙O的切线,
∴ED=EC,
∴AE=EC,
∵DE=5,∴AC=2DE=10,
在Rt△ADC中,DC=,
设BD=x,在Rt△BDC中,BC2=x2+62,
在Rt△ABC中,BC2=(x+8)2-102,
∴x2+62=(x+8)2-102,
解得x=4.5,
∴BC=
【点睛】
此题主要考查圆的切线问题,解题的关键是熟知切线的性质.
22、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.
【解析】
(1)利用二次函数解析式的顶点式求得结果即可;
(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.
【详解】
(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)
设二次函数表达式为:y=a(x﹣3)1﹣1.
∵该图象过A(1,0)
∴0=a(1﹣3)1﹣1,解得a=.
∴表达式为y=(x﹣3)1﹣1
(1)如图所示:
由已知条件可知直线与图形“G”要有三个交点
1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,
∴x3+x4+x5>11,
当直线过y=(x﹣3)1﹣1的图象顶点时,有1个交点,
由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)1+1,
∴令(x﹣3)1+1=﹣1时,解得x=3+1或x=3﹣1(舍去)
∴x3+x4+x5<9+1.
综上所述11<x3+x4+x5<9+1.
【点睛】
考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.
23、18 60分
【解析】
分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;
(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;
(3)根据概率公式计算即可;
(4)分别计算第4天,第6天的获奖率后比较即可.
详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;
(2)2÷[4÷(2+3+4+6+4+1)]=60份;
(3)抽到第4天回收问卷的概率是;
(4)第4天收回问卷获奖率,第6天收回问卷获奖率.
∵,
∴第6天收回问卷获奖率高.
点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.
24、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).
【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.
【详解】
解:(1)如图所示,点B的坐标为(﹣4,1);
(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);
(3)如图,△A2B2C2即为所求;
(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).
【点睛】
本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.
25、(1)1m.(1)1.5 m.
【解析】
(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;
(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.
【详解】
解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,
DF==1.
答:DF长为1m.
(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,
垂足分别为点M、N、H,
在Rt△DBM中,sin∠DBM=,
∴DM=1•sin35°≈1.2.
∵∠EDC=∠CNB,∠DCE=∠NCB,
∴∠EDC=∠CBN=35°,
在Rt△DEH中,cos∠DEH=,
∴EH=1.6•cos35°≈1.3.
∴EN=EH+HN=1.3+1.2=1.45≈1.5m.
答:E点离墙面AB的最远距离为1.5 m.
【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
26、
【解析】
解:由①得③
把③代入②得
把代人③得
∴原方程组的解为
27、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
2024年山东省日照市莒县中考二模数学试题: 这是一份2024年山东省日照市莒县中考二模数学试题,共4页。
2022年山东省临沂市兰陵县市级名校中考数学五模试卷含解析: 这是一份2022年山东省临沂市兰陵县市级名校中考数学五模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知,如图所示的几何体的俯视图是等内容,欢迎下载使用。
2022届山东省菏泽市定陶区市级名校中考数学五模试卷含解析: 这是一份2022届山东省菏泽市定陶区市级名校中考数学五模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解为等内容,欢迎下载使用。