还剩12页未读,
继续阅读
2022年山东省邹城市第八中学中考数学模拟预测试卷含解析
展开这是一份2022年山东省邹城市第八中学中考数学模拟预测试卷含解析,共15页。试卷主要包含了下列说法正确的是,下列事件中是必然事件的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.﹣2018的相反数是( )
A.﹣2018 B.2018 C.±2018 D.﹣
2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是
A.点A和点C B.点B和点D
C.点A和点D D.点B和点C
3.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PD B.PB C.PE D.PC
4.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
5.在,,,这四个数中,比小的数有( )个.
A. B. C. D.
6.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A. B. C. D.
7.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
8.下列事件中是必然事件的是( )
A.早晨的太阳一定从东方升起
B.中秋节的晚上一定能看到月亮
C.打开电视机,正在播少儿节目
D.小红今年14岁,她一定是初中学生
9.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.13 B.11或13 C.11 D.12
10.一次函数y=2x+1的图像不经过 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.
12.计算:2(a-b)+3b=___________.
13.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
15.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
16.8的算术平方根是_____.
17.的相反数是_____,倒数是_____,绝对值是_____
三、解答题(共7小题,满分69分)
18.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
19.(5分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程的解集(请直接写出答案).
20.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
21.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
22.(10分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
(2)化简:÷(1﹣)
23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
24.(14分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分析:只有符号不同的两个数叫做互为相反数.
详解:-1的相反数是1.
故选:B.
点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
2、C
【解析】
根据相反数的定义进行解答即可.
【详解】
解:由A表示-2,B表示-1,C表示0.75,D表示2.
根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
故答案为C.
【点睛】
本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
3、C
【解析】
观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.
点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
4、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
5、B
【解析】
比较这些负数的绝对值,绝对值大的反而小.
【详解】
在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
【点睛】
本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
6、A
【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
7、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
8、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
【详解】
解:B、C、D选项为不确定事件,即随机事件.故错误;
一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
故选A.
【点睛】
该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
9、B
【解析】
试题解析:x2-8x+15=0,
分解因式得:(x-3)(x-5)=0,
可得x-3=0或x-5=0,
解得:x1=3,x2=5,
若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
综上,△ABC的周长为11或1.
故选B.
考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
10、D
【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.
【详解】
∵k=2>0,b=1>0,
∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.
故选D.
【点睛】
本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
只要证明△PBC是等腰直角三角形即可解决问题.
【详解】
解:∵∠APO=∠BPO=30°,
∴∠APB=60°,
∵PA=PC=PB,∠APC=30°,
∴∠BPC=90°,
∴△PBC是等腰直角三角形,
∵OA=1,∠APO=30°,
∴PA=2OA=2,
∴BC=PC=2,
故答案为2.
【点睛】
本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
12、2a+b.
【解析】
先去括号,再合并同类项即可得出答案.
【详解】
原式=2a-2b+3b
=2a+b.
故答案为:2a+b.
13、
【解析】
试题解析:根据题意得,这一组数的第个数为:
故答案为
点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
14、-3<x<1
【解析】
试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
解:根据抛物线的图象可知:
抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
根据对称性,则另一交点为(﹣3,0),
所以y>0时,x的取值范围是﹣3<x<1.
故答案为﹣3<x<1.
考点:二次函数的图象.
15、②④
【解析】
根据分式的定义,将每个式子计算后,即可求解.
【详解】
=1不是分式,=,=3不是分式,=故选②④.
【点睛】
本题考查分式的判断,解题的关键是清楚分式的定义.
16、2.
【解析】
试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.
由算术平方根的定义可知:8的算术平方根是,
∵=2,
∴8的算术平方根是2.
故答案为2.
考点:算术平方根.
17、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
三、解答题(共7小题,满分69分)
18、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
19、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
【解析】
试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
试题解析:(1)∵B(2,﹣4)在y=上,
∴m=﹣1.
∴反比例函数的解析式为y=﹣.
∵点A(﹣4,n)在y=﹣上,
∴n=2.
∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),
∴,
解之得.
∴一次函数的解析式为y=﹣x﹣2.
(2)∵C是直线AB与x轴的交点,
∴当y=0时,x=﹣2.
∴点C(﹣2,0).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
(3)不等式的解集为:﹣4<x<0或x>2.
20、3
【解析】
试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
试题解析:∵BD3+AD3=63+83=303=AB3,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,CD=,
∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
因此△ABC的面积为3.
答:△ABC的面积是3.
考点:3.勾股定理的逆定理;3.勾股定理.
21、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
【解析】
(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.
【详解】
解:(1)将A(0,1),B(9,10)代入函数解析式得:
×81+9b+c=10,c=1,解得b=−2,c=1,
所以抛物线的解析式y=x2−2x+1;
(2)∵AC∥x轴,A(0,1),
∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
∵点A(0,1),点B(9,10),
∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
∴PE=m+1−(m2−2m+1)=−m2+3m.
∵AC⊥PE,AC=6,
∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
=AC⋅(EF+PF)=AC⋅EP
=×6(−m2+3m)=−m2+9m.
∵0
(3)∵y=x2−2x+1=(x−3)2−2,
P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
∴PF=CF,∴∠PCF=45∘,
同理可得∠EAF=45∘,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q,
设Q(t,1)且AB=,AC=6,CP=,
∵以C,P,Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
②当△CQP∽△ABC时,
CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.
22、(1)5(2)
【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
【详解】
解:(1)原式=4﹣2+2+2+1﹣4×
=7﹣2
=5;
(2)原式=÷
=•
=.
【点睛】
本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
23、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
【详解】
(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.
得
解得:,
答:A、B两种品牌得化妆品每套进价分别为100元,75元.
(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
解得,5≤m≤10,
利润是30m+20(50﹣m)=1000+10m,
当m取最大10时,利润最大,
最大利润是1000+100=1100,
所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
24、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
相关试卷
10,2023年山东省邹城市第六中学南校区中考数学模拟预测题:
这是一份10,2023年山东省邹城市第六中学南校区中考数学模拟预测题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省邹城市第六中学南校区中考数学模拟预测题(原卷版+解析版):
这是一份2023年山东省邹城市第六中学南校区中考数学模拟预测题(原卷版+解析版),文件包含2023年山东省邹城市第六中学南校区中考数学模拟预测题原卷版docx、2023年山东省邹城市第六中学南校区中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
2023年山东省济宁市邹城市中考数学模拟试卷(四)(6月份)(含解析):
这是一份2023年山东省济宁市邹城市中考数学模拟试卷(四)(6月份)(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。