2022年山西省晋中学市榆社县十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3
2.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )
A. B. C. D.
3.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
4.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5 B.7 C.9 D.11
5.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
6.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
7.若代数式有意义,则实数x的取值范围是( )
A.x=0 B.x=2 C.x≠0 D.x≠2
8.计算:得( )
A.- B.- C.- D.
9.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
A.4π+3 B.4π+ C.π+ D.π+3
10.在数轴上表示不等式组的解集,正确的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.
12.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
13.________.
14.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.
15.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.
16.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.
18.(8分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷2
19.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
20.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)当方程有一个根为1时,求k的值.
21.(8分)阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.
22.(10分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.
(1)求证:AE=CE;
(2)若tanD=3,求AB的长.
23.(12分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
24.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.
【详解】
,A选项错误;(﹣a2)3=- a6,B错误;,C错误;. 6a2×2a=12a3 ,D正确;故选:D.
【点睛】
本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.
2、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
∴点(m,n)在函数y=图象上的概率是:.
故选B.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
3、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
4、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
5、D
【解析】
因为,所以,因为,故选D.
6、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
7、D
【解析】
根据分式的分母不等于0即可解题.
【详解】
解:∵代数式有意义,
∴x-2≠0,即x≠2,
故选D.
【点睛】
本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
8、B
【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.
【详解】
-
故选B.
【点睛】
本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
9、A
【解析】
连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
【详解】
如下图,连AC,OC,BC,设CD交AB于H,
∵CD垂直平分线段OB,
∴CO=CB,
∵OC=OB,
∴OC=OB=BC,
∴,
∵AB是直径,
∴,
∴,
∵,
∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
∵MA=MH,
∴
∴,
∵,
∴CF扫过的面积为,
故选:A.
【点睛】
本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
10、C
【解析】
解不等式组,再将解集在数轴上正确表示出来即可
【详解】
解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.
【点睛】
本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(6054,2)
【解析】
分析:
分析题意和图形可知,点B1、B3、B5、……在x轴上,点B2、B4、B6、……在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.
详解:
∵在△AOB中,∠AOB=90°,OA=,OB=2,
∴AB=,
∴由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,
∴点B2的坐标为(6,2),
同理可得点B4的坐标为(12,2),
由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,
∴点B2018相当于是由点B向右平移了:个单位得到的,
∴点B2018的坐标为(6054,2).
故答案为:(6054,2).
点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.
12、1
【解析】
把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
【详解】
∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
故答案为:1.
【点睛】
本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
13、1
【解析】
先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
【详解】
解:原式=2×=1.
故答案为1.
【点睛】
本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
14、20.
【解析】
分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.
解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,
FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.
点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.
15、
【解析】
分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.
详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,
∴BC=1cm,AC=1cm,∠A′BA=110°,∠CBC′=110°,
∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(41-11)=4πcm1.
故答案为4π.
点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.
16、1
【解析】
∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分线DE交AC于点D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.
三、解答题(共8题,共72分)
17、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【详解】
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵MN//AB,
∴四边形ADEC为平行四边形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
【点睛】
本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
18、
【解析】
按照实数的运算顺序进行运算即可.
【详解】
解:原式
【点睛】
本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.
19、(1)见解析;(2)
【解析】
分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
20、(2)证明见解析;(2)k2=2,k2=2.
【解析】
(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;
(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.
【详解】
(2)证明:△=b2﹣4ac,
=[﹣(2k+2)]2﹣4(k2+k),
=4k2+4k+2﹣4k2﹣4k,
=2>2.
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,
解得:k2=2,k2=2.
【点睛】
本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.
21、 (1) =x2+7+ (2) 见解析
【解析】
(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
(2)原式分子变形后,利用不等式的性质求出最小值即可.
【详解】
(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
可得 ,
解得:a=7,b=1,
则原式=x2+7+;
(2)由(1)可知,=x2+7+ .
∵x2≥0,∴x2+7≥7;
当x=0时,取得最小值0,
∴当x=0时,x2+7+最小值为1,
即原式的最小值为1.
22、(1)见解析;(2)AB=4
【解析】
(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;
(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.
【详解】
(1)证明:
过点B作BH⊥CE于H,如图1.
∵CE⊥AD,
∴∠BHC=∠CED=90°,∠1+∠D=90°.
∵∠BCD=90°,
∴∠1+∠2=90°,
∴∠2=∠D.
又BC=CD
∴△BHC≌△CED(AAS).
∴BH=CE.
∵BH⊥CE,CE⊥AD,∠A=90°,
∴四边形ABHE是矩形,
∴AE=BH.
∴AE=CE.
(2)∵四边形ABHE是矩形,
∴AB=HE.
∵在Rt△CED中,,
设DE=x,CE=3x,
∴.
∴x=2.
∴DE=2,CE=3.
∵CH=DE=2.
∴AB=HE=3-2=4.
【点睛】
本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.
23、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
【解析】
(1)根据整式加减法则可求出二次项系数;
(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
【详解】
(1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
(2)A+C=,且A=,C=4,AC=
【点睛】
本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
24、答案见解析
【解析】
由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.
山西省吕梁市汾阳市重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份山西省吕梁市汾阳市重点中学2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了下列命题是真命题的个数有等内容,欢迎下载使用。
贵州遵义市达兴中学2022年十校联考最后数学试题含解析: 这是一份贵州遵义市达兴中学2022年十校联考最后数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果是,解分式方程﹣3=时,去分母可得,计算等内容,欢迎下载使用。
2022年山西省大同市名校十校联考最后数学试题含解析: 这是一份2022年山西省大同市名校十校联考最后数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列说法不正确的是,下列计算正确的是等内容,欢迎下载使用。