终身会员
搜索
    上传资料 赚现金

    2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析第1页
    2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析第2页
    2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份2022年山西省临汾市侯马市、襄汾县重点中学初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了估计﹣2的值应该在,近似数精确到,方程的解是.等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )

    A. B. C. D.
    2.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    3.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    4.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是(  )

    A.135° B.115° C.65° D.50°
    5.近似数精确到( )
    A.十分位 B.个位 C.十位 D.百位
    6.方程的解是( ).
    A. B. C. D.
    7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(  )
    A.9人 B.10人 C.11人 D.12人
    8.四个有理数﹣1,2,0,﹣3,其中最小的是( )
    A.﹣1 B.2 C.0 D.﹣3
    9.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
    AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
    DG=DE在以上4个结论中,正确的共有( )个

    A.1个 B.2 个 C.3 个 D.4个
    10.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
    成绩
    人数(频数)
    百分比(频率)
    0


    5

    0.2
    10
    5

    15

    0.4
    20
    5
    0.1
    根据表中已有的信息,下列结论正确的是(  )
    A.共有40名同学参加知识竞赛
    B.抽到的同学参加知识竞赛的平均成绩为10分
    C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
    D.抽到同学参加知识竞赛成绩的中位数为15分
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.方程x+1=的解是_____.
    12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).

    13.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
    14.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
    15.计算:___________.
    16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.

    三、解答题(共8题,共72分)
    17.(8分)计算:
    (1)﹣12018+|﹣2|+2cos30°;
    (2)(a+1)2+(1﹣a)(a+1);
    18.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
    19.(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.

    (1)求观测点B到航线的距离;
    (2)求该轮船航行的速度(结果精确到0.1km/h).
    (参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
    20.(8分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
    (1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为   (填“真”或“假”)命题,并说明理由;
    (2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
    (3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.

    21.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
    22.(10分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
    (1)求楼房的高度约为多少米?
    (2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.

    23.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

    24.在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    △AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
    解:(1)当0<x≤1时,如图,
    在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
    ∵MN⊥AC,
    ∴MN∥BD;
    ∴△AMN∽△ABD,
    ∴=,
    即,=,MN=x;
    ∴y=AP×MN=x2(0<x≤1),
    ∵>0,
    ∴函数图象开口向上;
    (2)当1<x<2,如图,
    同理证得,△CDB∽△CNM,=,
    即=,MN=2-x;
    ∴y=
    AP×MN=x×(2-x),
    y=-x2+x;
    ∵-<0,
    ∴函数图象开口向下;
    综上答案C的图象大致符合.
    故选C.
    本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.
    2、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
    3、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    4、B
    【解析】
    由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= ∠AOB,然后根据圆内接四边形的性质求解.
    【详解】
    解:在圆上取点 P ,连接 PA 、 PB.
    ∵OA=OB ,
    ∴∠OAB=∠OBA=25° ,
    ∴∠AOB=180°−2×25°=130° ,
    ∴∠P=∠AOB=65°,
    ∴∠ACB=180°−∠P=115°.

    故选B.
    【点睛】
    本题考查的是圆,熟练掌握圆周角定理是解题的关键.
    5、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字
    6、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    7、C
    【解析】
    设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
    【详解】
    设参加酒会的人数为x人,依题可得:
    x(x-1)=55,
    化简得:x2-x-110=0,
    解得:x1=11,x2=-10(舍去),
    故答案为C.
    【点睛】
    考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
    8、D
    【解析】
    解:∵-1<-1<0<2,∴最小的是-1.故选D.
    9、C
    【解析】
    【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
    【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
    ∴∠DFG=∠A=90°,
    ∴△ADG≌△FDG,①正确;
    ∵正方形边长是12,
    ∴BE=EC=EF=6,
    设AG=FG=x,则EG=x+6,BG=12﹣x,
    由勾股定理得:EG2=BE2+BG2,
    即:(x+6)2=62+(12﹣x)2,
    解得:x=4
    ∴AG=GF=4,BG=8,BG=2AG,②正确;
    ∵△ADG≌△FDG,△DCE≌△DFE,
    ∴∠ADG=∠FDG,∠FDE=∠CDE
    ∴∠GDE==45〫.③正确;
    BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
    ∴正确说法是①②③
    故选:C
    【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
    10、B
    【解析】
    根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
    【详解】
    ∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
    ∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
    ∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
    ∵0分同学10人,其频率为0.2,
    ∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
    ∵第25、26名同学的成绩为10分、15分,
    ∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
    故选:B.
    【点睛】
    本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x=1
    【解析】
    无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.
    【详解】
    两边平方得:(x+1)1=1x+5,即x1=4,
    开方得:x=1或x=-1,
    经检验x=-1是增根,无理方程的解为x=1.
    故答案为x=1
    12、①②③
    【解析】
    依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
    【详解】
    ∵PC=CD,∠PCD=30°,
    ∴∠PDC=75°,
    ∴∠FDP=15°,
    ∵∠DBA=45°,
    ∴∠PBD=15°,
    ∴∠FDP=∠PBD,
    ∵∠DFP=∠BPC=60°,
    ∴△DFP∽△BPH,故①正确;
    ∵∠DCF=90°﹣60°=30°,
    ∴tan∠DCF=,
    ∵△DFP∽△BPH,
    ∴,
    ∵BP=CP=CD,
    ∴,故②正确;
    ∵PC=DC,∠DCP=30°,
    ∴∠CDP=75°,
    又∵∠DHP=∠DCH+∠CDH=75°,
    ∴∠DHP=∠CDP,而∠DPH=∠CPD,
    ∴△DPH∽△CPD,
    ∴,即PD2=PH•CP,
    又∵CP=CD,
    ∴PD2=PH•CD,故③正确;
    如图,过P作PM⊥CD,PN⊥BC,
    设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
    ∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
    ∴∠PCD=30°
    ∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
    ∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
    =×4×2+×2×4﹣×4×4
    =4+4﹣8
    =4﹣4,
    ∴,故④错误,
    故答案为:①②③.

    【点睛】
    本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.
    13、3:4
    【解析】
    由于相似三角形的相似比等于对应中线的比,
    ∴△ABC与△DEF对应中线的比为3:4
    故答案为3:4.
    14、1
    【解析】
    联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
    【详解】
    联立得:,
    ①×2+②,得:10x=20,
    解得:x=2,
    将x=2代入①,得:1-y=1,
    解得:y=0,
    则,
    将x=2、y=0代入,得:,
    解得:,
    则mn=1,
    故答案为1.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
    15、x+1
    【解析】
    先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.
    【详解】
    解:
    =


    .
    故答案是:x+1.
    【点睛】
    本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
    16、2
    【解析】
    要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
    【详解】
    解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
    ∵圆柱底面的周长为6cm,圆柱高为2cm,
    ∴AB=2cm,BC=BC′=3cm,
    ∴AC2=22+32=13,
    ∴AC=cm,
    ∴这圈金属丝的周长最小为2AC=2cm.
    故答案为2.

    【点睛】
    本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.

    三、解答题(共8题,共72分)
    17、 (1)1;(2)2a+2
    【解析】
    (1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
    (2)先化简原式,然后将x的值代入原式即可求出答案.
    【详解】
    解:(1)原式=﹣1+2﹣+2×=1;
    (2)原式=a2+2a+1+1﹣a2=2a+2.
    【点睛】
    本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
    18、(1)4元或6元;(2)九折.
    【解析】
    解:(1)设每千克核桃应降价x元.
    根据题意,得(60﹣x﹣40)(100+×20)=2240,
    化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
    答:每千克核桃应降价4元或6元.
    (2)由(1)可知每千克核桃可降价4元或6元.
    ∵要尽可能让利于顾客,∴每千克核桃应降价6元.
    此时,售价为:60﹣6=54(元),.
    答:该店应按原售价的九折出售.
    19、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h
    【解析】试题分析:(1)设AB与l交于点O,利用∠DAO=60°,利用∠DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;
    (2)先计算出DE=EF+DF=求出DE=5,再由进而由tan∠CBE=求出EC,即可求出CD的长,进而求出航行速度.
    试题解析:(1)设AB与l交于点O,

    在Rt△AOD中,
    ∵∠OAD=60°,AD=2(km),
    ∴OA==4(km),
    ∵AB=10(km),
    ∴OB=AB﹣OA=6(km),
    在Rt△BOE中,∠OBE=∠OAD=60°,
    ∴BE=OB•cos60°=3(km),
    答:观测点B到航线l的距离为3km;
    (2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
    ∵∠BEO=90°,BO=6,BE=3,∴OE==3,
    ∴DE=OD+OE=5(km);
    CE=BE•tan∠CBE=3tan76°,
    ∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
    ∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
    答:该轮船航行的速度约为40.6km/h.
    【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键.
    20、(1)真;(2);(3)或或.
    【解析】
    (1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
    (2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
    (3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
    【详解】
    (1)真 .
    理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
    则∠MPB=∠MBP>∠ACP,
    所以在线段AB上不存在“好点”;

    (2)∵P为BA延长线上一个“好点”;
    ∴∠ACP=∠MBP;
    ∴△PAC∽△PMB;
    ∴即;
    ∵M为PC中点,
    ∴MP=2;
    ∴;
    ∴.
    (3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM;
    ∴DM2=DP·DB即4= DP·(5DP);
    解得DP=1,DP=4(不在AB边上,舍去;)
    ∴AP=2

    第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;

    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM
    ∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
    解得DP=1(不在AB延长线上,舍去),DP=4
    ∴AP=8;
    第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;

    此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;

    第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
    ∴△PAC∽△PMB;

    ∴BM垂直平分PC则BC=BP= ;

    ∴综上所述,或或;
    【点睛】
    本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
    21、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.
    【解析】
    (1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;
    (2)构建方程即可解决问题;
    (3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.
    【详解】
    (1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.
    (2)由题意:20=﹣x2+32x﹣2.
    解得:x=16,
    答:该产品第一年的售价是16元.
    (3)由题意:7≤x≤16,
    W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,
    ∵7≤x≤16,
    ∴x=7时,W2有最小值,最小值=18(万元),
    答:该公司第二年的利润W2至少为18万元.
    【点睛】
    本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.
    22、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
    【解析】
    试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
    试题解析:解:(1)当当时,在Rt△ABE中,
    ∵,
    ∴BA=10tan60°=米.
    即楼房的高度约为17.3米.

    当时,小猫仍可晒到太阳.理由如下:
    假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
    ∵∠BFA=45°,
    ∴,此时的影长AF=BA=17.3米,
    所以CF=AF-AC=17.3-17.2=0.1.
    ∴CH=CF=0.1米,
    ∴大楼的影子落在台阶MC这个侧面上.
    ∴小猫仍可晒到太阳.
    考点:解直角三角形.
    23、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    24、(1);(2)1.
    【解析】
    (1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;
    (2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=6时,S有最大值为1.
    【详解】
    解:(1)∵△AEF∽△ABC,
    ∴,
    ∵边BC长为18,高AD长为12,
    ∴=;
    (2)∵EH=KD=x,
    ∴AK=12﹣x,EF=(12﹣x),
    ∴S=x(12﹣x)=﹣(x﹣6)2+1.
    当x=6时,S有最大值为1.
    【点睛】
    本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.

    相关试卷

    山西省大同市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份山西省大同市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。

    山西省大同市重点中学2022年初中数学毕业考试模拟冲刺卷含解析:

    这是一份山西省大同市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    2022届山西省临汾市名校初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022届山西省临汾市名校初中数学毕业考试模拟冲刺卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map