2022年上海市宝山区名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有( )
A.①②③④ B.①②④
C.①② D.②③④
2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )
A.① B.② C.③ D.④
4.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
5.二元一次方程组的解是( )
A. B. C. D.
6.若x>y,则下列式子错误的是( )
A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
7.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )
A. B.
C. D.
8.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为( )
A.2m B. m C.3m D.6m
9.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
10.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )
A. B. C. D.
11.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( )
A.172 B.171 C.170 D.168
12.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
14.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.
15.如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要_____个三角形.
16.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.
17.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.
18.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
(1)求证:BE=CE
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
①求证:△BEM≌△CEN;
②若AB=2,求△BMN面积的最大值;
③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
20.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
21.(6分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
22.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
23.(8分)计算:2sin30°﹣|1﹣|+()﹣1
24.(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.
(1)根据图中所给信息填写下表:
投中个数统计
平均数
中位数
众数
A
8
B
7
7
(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.
25.(10分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别
频数(人数)
频率
武术类
0.25
书画类
20
0.20
棋牌类
15
b
器乐类
合计
a
1.00
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=_____,b=_____;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
26.(12分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.
27.(12分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
甲
乙
丙
单价(元/米2)
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y小路=100t-100,
令y小带=y小路,可得60t=100t-100,
解得t=2.5,
即小带和小路两直线的交点横坐标为t=2.5,
此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,
∴③不正确;
令|y小带-y小路|=50,
可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,
可解得t=,
当100-40t=-50时,
可解得t=,
又当t=时,y小带=50,此时小路还没出发,
当t=时,小路到达B城,y小带=250.
综上可知当t的值为或或或时,两车相距50 km,
∴④不正确.
故选C.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
2、C
【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.
【详解】
A、不是轴对称图形,也不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,但不是中心对称图形.故此选项错误.
故选C.
【点睛】
考点:1、中心对称图形;2、轴对称图形
3、A
【解析】
根据题意得到原几何体的主视图,结合主视图选择.
【详解】
解:原几何体的主视图是:
.
视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
故取走的正方体是①.
故选A.
【点睛】
本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
4、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
5、B
【解析】
利用加减消元法解二元一次方程组即可得出答案
【详解】
解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故选:B.
【点睛】
此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
6、B
【解析】
根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
A、不等式两边都减3,不等号的方向不变,正确;
B、乘以一个负数,不等号的方向改变,错误;
C、不等式两边都加3,不等号的方向不变,正确;
D、不等式两边都除以一个正数,不等号的方向不变,正确.
故选B.
7、C
【解析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
即可得出a、b之间的关系式.
【详解】
∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
∴2014年我省财政收入为a(1+8.9%)亿元,
∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
故选C.
【点睛】
此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.
8、C
【解析】
依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.
【详解】
解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,
∵三根木条要组成三角形,
∴x-x<10-2x
故选择C.
【点睛】
本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.
9、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
10、C
【解析】
根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.
【详解】
解:由图表数据描点连线,补全图像可得如图,
抛物线对称轴在36和54之间,约为41℃
∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.
故选:C,
【点睛】
本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.
11、C
【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.
【详解】
从小到大排列:
150,164,168,168,,172,176,183,185,
∴中位数为:(168+172)÷2=170.
故选C.
【点睛】
本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
12、D
【解析】
此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
【详解】
解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选D.
点评:本题考核立意相对较新,考核了学生的空间想象能力.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据垂径定理求得BD,然后根据勾股定理求得即可.
【详解】
解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴在Rt△OBD中,OD==1.
故答案为1.
【点睛】
本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
14、1
【解析】
先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
【详解】
解:∵点E,F分别是的中点,
∴FE是△BCD的中位线,
.
又∵E是BD的中点,
∴Rt△ABD中,,
故答案为1.
【点睛】
本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
15、n2﹣n+1
【解析】
观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;…可得,每一层比上一层多的个数依次为2,4,6,…据此作答.
【详解】
观察可得,第1层三角形的个数为1,第2层三角形的个数为22−2+1=3,
第3层三角形的个数为32−3+1=7,
第四层图需要42−4+1=13个三角形
摆第五层图需要52−5+1=21.
那么摆第n层图需要n2−n+1个三角形。
故答案为:n2−n+1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.
16、
【解析】
连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
【详解】
连接AG,延长AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案为.
【点睛】
本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.
【详解】
画树状图得:
∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,
∴两次摸出的球都是红球的概率是,
故答案为.
【点睛】
本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.
18、或.
【解析】
①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题
②同①的解题思路一样
【详解】
解:分两种情况:
①如图1所示:
设AD=x,延长A'D交AB于H,则A'H⊥AB,
∴∠AHD=∠C=90°,
由勾股定理得:AB==13,
∵∠A=∠A,
∴△ADH∽△ABC,
∴,即,
解得:DH=x,AH=x,
∵E是AB的中点,
∴AE=AB=,
∴HE=AE﹣AH=﹣x,
由折叠的性质得:A'D=AD=x,A'E=AE=,
∴sin∠A=sin∠A'= ,
解得:x= ;
②如图2所示:设AD=A'D=x,
∵A'D⊥AB,
∴∠A'HE=90°,
同①得:A'E=AE=,DH=x,
∴A'H=A'D﹣DH=x﹣=x,
∴cos∠A=cos∠A'= ,
解得:x= ;
综上所述,AD的长为 或.
故答案为 或.
【点睛】
此题考查了勾股定理,三角形相似,关键在于做辅助线
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)详见解析;(1)①详见解析;②1;③.
【解析】
(1)只要证明△BAE≌△CDE即可;
(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
②构建二次函数,利用二次函数的性质即可解决问题;
③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵E是AD中点,
∴AE=DE,
∴△BAE≌△CDE,
∴BE=CE.
(1)①解:如图1中,
由(1)可知,△EBC是等腰直角三角形,
∴∠EBC=∠ECB=45°,
∵∠ABC=∠BCD=90°,
∴∠EBM=∠ECN=45°,
∵∠MEN=∠BEC=90°,
∴∠BEM=∠CEN,
∵EB=EC,
∴△BEM≌△CEN;
②∵△BEM≌△CEN,
∴BM=CN,设BM=CN=x,则BN=4-x,
∴S△BMN=•x(4-x)=-(x-1)1+1,
∵-<0,
∴x=1时,△BMN的面积最大,最大值为1.
③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.
∴EG=m+m=(1+)m,
∵S△BEG=•EG•BN=•BG•EH,
∴EH==m,
在Rt△EBH中,sin∠EBH=.
【点睛】
本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
20、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
【解析】
【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
得,解得:,
∴抛物线的表达式为y=﹣x2+2x+1;
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
∴抛物线的对称轴为直线x=1,
当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
∵抛物线的表达式为y=﹣x2+2x+1,
∴点C的坐标为(0,1),点P的坐标为(2,1),
∴点M的坐标为(1,6);
当t≠2时,不存在,理由如下:
若四边形CDPM是平行四边形,则CE=PE,
∵点C的横坐标为0,点E的横坐标为0,
∴点P的横坐标t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(1)①在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(1,0)、C(0,1)代入y=mx+n,
得,解得:,
∴直线BC的解析式为y=﹣x+1,
∵点P的坐标为(t,﹣t2+2t+1),
∴点F的坐标为(t,﹣t+1),
∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴当t=时,S取最大值,最大值为.
∵点B的坐标为(1,0),点C的坐标为(0,1),
∴线段BC=,
∴P点到直线BC的距离的最大值为,
此时点P的坐标为(,).
【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
21、1千米/时
【解析】
设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.
【详解】
设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,
根据题意得:6(20﹣x)=1(20+x),
解得:x=1.
答:水流的速度是1千米/时.
【点睛】
本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.
22、证明见解析.
【解析】
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
【详解】
解:方法(一)
证明:∵AB、CD是⊙O的直径,
∴.
∵FD=EB,
∴.
∴.
即.
∴∠D=∠B.
方法(二)
证明:如图,连接CF,AE.
∵AB、CD是⊙O的直径,
∴∠F=∠E=90°(直径所对的圆周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.
【点睛】
本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
23、4﹣
【解析】
原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.
【详解】
原式=2×﹣( ﹣1)+2
=1﹣+1+2
=4﹣.
【点睛】
本题考查了实数的运算,熟练掌握运算法则是解本题的关键.
24、(1)7,9,7;(2)应该选派B;
【解析】
(1)分别利用平均数、中位数、众数分析得出答案;
(2)利用方差的意义分析得出答案.
【详解】
(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
B成绩排序后为6,7,7,7,7,8,故中位数为7;
故答案为:7,9,7;
(2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
= [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;
从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
【点睛】
此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
25、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
【解析】
(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
【详解】
(1)∵调查的人数较多,范围较大,
∴应当采用随机抽样调查,
∵到六年级每个班随机调查一定数量的同学相对比较全面,
∴丙同学的说法最合理.
(2)①∵喜欢书画类的有20人,频率为0.20,
∴a=20÷0.20=100,
b=15÷100=0.15;
②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
③喜欢武术类的人数为:560×0.25=140人.
【点睛】
本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
26、见解析.
【解析】
试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.
试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,
∴CE=CD,BC=AC,
∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,
∴∠ECB=∠DCA,
在△CDA与△CEB中,,
∴△CDA≌△CEB.
考点:全等三角形的判定;等腰直角三角形.
27、(1)8m2;(2)68m2;(3) 40,8
【解析】
(1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
【详解】
(1) ∵为长方形和菱形的对称中心,,∴
∵,,∴
∴当时,,
(2)∵,
∴-,
∵,,
∴解不等式组得,
∵,结合图像,当时,随的增大而减小.
∴当时, 取得最大值为
(3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
【点睛】
本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
上海市松江区达标名校2022年中考数学考前最后一卷含解析: 这是一份上海市松江区达标名校2022年中考数学考前最后一卷含解析,共22页。试卷主要包含了答题时请按要求用笔,内角和为540°的多边形是等内容,欢迎下载使用。
2022年上海市闵行区名校中考考前最后一卷数学试卷含解析: 这是一份2022年上海市闵行区名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列调查中适宜采用抽样方式的是,九年级等内容,欢迎下载使用。
2022年宁夏石嘴山市名校中考数学考前最后一卷含解析: 这是一份2022年宁夏石嘴山市名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。