年终活动
搜索
    上传资料 赚现金

    2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析

    2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析第1页
    2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析第2页
    2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析

    展开

    这是一份2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析,共19页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    2.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是(  )

    A.2 B.3 C.4 D.5
    3.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为

    A. B. C. D.
    4.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(     )
    A.2                        B.3                        C.4                                   D.5
    5.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是(  )

    A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
    6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).

    A.60 ° B.75° C.85° D.90°
    7.小明解方程的过程如下,他的解答过程中从第(  )步开始出现错误.
    解:去分母,得1﹣(x﹣2)=1①
    去括号,得1﹣x+2=1②
    合并同类项,得﹣x+3=1③
    移项,得﹣x=﹣2④
    系数化为1,得x=2⑤
    A.① B.② C.③ D.④
    8.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=(  )

    A.2.5 B.3 C.4 D.5
    9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是(  )

    A.135° B.120° C.60° D.45°
    10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
    12.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.

    13.计算:的值是______________.
    14.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.

    15.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.

    16.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
    三、解答题(共8题,共72分)
    17.(8分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
    18.(8分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.

    19.(8分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
    (1)求证:AC平分∠DAO.
    (2)若∠DAO=105°,∠E=30°
    ①求∠OCE的度数;
    ②若⊙O的半径为2,求线段EF的长.

    20.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×
    21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    22.(10分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
    (1)求二次函数的表达式;
    (2)当﹣<x<1时,请求出y的取值范围;
    (3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.

    23.(12分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?
    24.为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
    成绩
    频数
    频率
    优秀
    45
    b
    良好
    a
    0.3
    合格
    105
    0.35
    不合格
    60
    c
    (1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    2、B
    【解析】
    由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.
    【详解】
    ∵数轴上的点 A,B 分别与实数﹣1,1 对应,
    ∴AB=|1﹣(﹣1)|=2,
    ∴BC=AB=2,
    ∴与点 C 对应的实数是:1+2=3.
    故选B.
    【点睛】
    本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.
    3、C
    【解析】
    ∵,∠A=∠A,
    ∴△ABC∽△AED。∴。
    ∴。故选C。
    4、D
    【解析】
    设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
    【详解】
    设这个数是a,
    把x=1代入得:(-2+1)=1-,
    ∴1=1-,
    解得:a=1.
    故选:D.
    【点睛】
    本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
    5、C
    【解析】
    直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.
    【详解】
    选项A,从数轴上看出,a在﹣1与0之间,
    ∴﹣1<a<0,
    故选项A不合题意;
    选项B,从数轴上看出,a在原点左侧,b在原点右侧,
    ∴a<0,b>0,
    ∴ab<0,
    故选项B不合题意;
    选项C,从数轴上看出,a在b的左侧,
    ∴a<b,
    即a﹣b<0,
    故选项C符合题意;
    选项D,从数轴上看出,a在﹣1与0之间,
    ∴1<b<2,
    ∴|a|<|b|,
    ∵a<0,b>0,
    所以a+b=|b|﹣|a|>0,
    故选项D不合题意.
    故选:C.
    【点睛】
    本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.
    6、C
    【解析】
    试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
    如图,设AD⊥BC于点F.则∠AFB=90°,

    ∴在Rt△ABF中,∠B=90°-∠BAD=25°,
    ∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
    即∠BAC的度数为85°.故选C.
    考点: 旋转的性质.
    7、A
    【解析】
    根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
    【详解】
    =1,
    去分母,得1-(x-2)=x,故①错误,
    故选A.
    【点睛】
    本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
    8、A
    【解析】
    先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
    【详解】
    ∵∠ACB=90°,D为AB中点
    ∴CD=
    ∵点E、F分别为BC、BD中点
    ∴.
    故答案为:A.
    【点睛】
    本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
    9、B
    【解析】
    易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAF=∠DAF,
    ∴△ABF≌△ADF,
    ∴∠AFD=∠AFB,
    ∵CB=CE,
    ∴∠CBE=∠CEB,
    ∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
    ∴∠CBE=15°,
    ∵∠ACB=45°,
    ∴∠AFB=∠ACB+∠CBE=60°.
    ∴∠AFE=120°.
    故选B.
    【点睛】
    此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
    10、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
    故答案是:.
    12、2+
    【解析】
    试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
    ∵PE⊥AB,AB=2,半径为2,
    ∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
    ∵点A在直线y=x上,
    ∴∠AOC=45°,
    ∵∠DCO=90°,
    ∴∠ODC=45°,
    ∴△OCD是等腰直角三角形,
    ∴OC=CD=2,
    ∴∠PDE=∠ODC=45°,
    ∴∠DPE=∠PDE=45°,
    ∴DE=PE=1,
    ∴PD=
    ∵⊙P的圆心是(2,a),
    ∴a=PD+DC=2+.

    【点睛】
    本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
    13、-1
    【解析】
    解:=-1.故答案为:-1.
    14、1°
    【解析】
    根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
    【详解】
    ∵△ABC≌△ADE,
    ∴∠BAC=∠DAE,AB=AD,
    ∴∠BAD=∠EAC=40°,
    ∴∠B=(180°-40°)÷2=1°,
    故答案为1.
    【点睛】
    本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
    15、-4
    【解析】
    :由反比例函数解析式可知:系数,
    ∵S△AOB=2即,∴;
    又由双曲线在二、四象限k<0,∴k=-4
    16、3
    【解析】
    ∵圆锥的母线长是5cm,侧面积是15πcm2,
    ∴圆锥的侧面展开扇形的弧长为:l==6π,
    ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,

    三、解答题(共8题,共72分)
    17、
    【解析】
    原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;
    【详解】
    解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab
    =a2+b2,
    当a=1、b=﹣时,
    原式=12+(﹣)2
    =1+
    =.
    【点睛】
    考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.
    18、 (1)72°,见解析;(2)7280;(3).
    【解析】
    (1)根据题意列式计算,补全条形统计图即可;
    (2)根据题意列式计算即可;
    (3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
    【详解】
    (1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
    月季的株数为2000×90%-380-422-270=728(株),
    补全条形统计图如图所示:

    (2)月季的成活率为
    所以月季成活株数为8000×91%=7280(株).
    故答案为:7280.
    (3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:

    所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
    ∴P(恰好选到成活率较高的两类花苗)
    【点睛】
    此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
    19、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
    【解析】
    【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
    又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
    (2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
    ②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
    【试题解析】
    (1)∵直线与⊙O相切,∴OC⊥CD.
    又∵AD⊥CD,∴AD//OC.
    ∴∠DAC=∠OCA.
    又∵OC=OA,∴∠OAC=∠OCA.
    ∴∠DAC=∠OAC.
    ∴AC平分∠DAO.
    (2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
    ∵∠E=30°,∴∠OCE=45°.
    ②作OG⊥CE于点G,可得FG=CG
    ∵OC=,∠OCE=45°.∴CG=OG=2.
    ∴FG=2.
    ∵在Rt△OGE中,∠E=30°,∴GE=.
    ∴EF=GE-FG=-2.

    【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
    20、﹣1
    【解析】
    根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
    【详解】
    原式=﹣1+3﹣1×3=﹣1.
    【点睛】
    本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
    21、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    22、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
    【解析】
    (1)利用对称轴公式求出m的值,即可确定出解析式;
    (1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
    (3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
    【详解】
    (1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
    (1)当x=﹣时,y=;当x=1时,y=.
    ∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
    (3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
    ∵点A在点B的左侧,∴点A坐标为(﹣6,0).
    设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
    设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
    【点睛】
    本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
    23、今年的总收入为220万元,总支出为1万元.
    【解析】
    试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.
    试题解析:
    设去年的总收入为x万元,总支出为y万元.
    根据题意,得,
    解这个方程组,得,
    ∴(1+10%)x=220,(1-20%)y=1.
    答:今年的总收入为220万元,总支出为1万元.
    24、(1)300人(2)b=0.15,c=0.2;(3)
    【解析】
    分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;
    (2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;
    (3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
    详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),
    答:该校初三学生共有300人;
    (2)由(1)得:a=300×0.3=90(人),
    b==0.15,
    c==0.2;
    如图所示:

    (3)画树形图得:

    ∵一共有12种情况,抽取到甲和乙的有2种,
    ∴P(抽到甲和乙)==.
    点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.

    相关试卷

    浙江省杭州市下沙区重点达标名校2021-2022学年中考数学四模试卷含解析:

    这是一份浙江省杭州市下沙区重点达标名校2021-2022学年中考数学四模试卷含解析,共17页。试卷主要包含了下列说法正确的是,的相反数是等内容,欢迎下载使用。

    浙江省杭州市拱墅区重点名校2021-2022学年中考数学五模试卷含解析:

    这是一份浙江省杭州市拱墅区重点名校2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,函数y=mx2+等内容,欢迎下载使用。

    杭州市萧山区重点达标名校2022年中考数学模试卷含解析:

    这是一份杭州市萧山区重点达标名校2022年中考数学模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-4的相反数是,不等式组的解集为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map