终身会员
搜索
    上传资料 赚现金

    2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析

    立即下载
    加入资料篮
    2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析第1页
    2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析第2页
    2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析

    展开

    这是一份2022年浙江省杭州市下城区朝晖中学中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为(  )
    A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣3
    2.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为(  )

    A.80° B.90° C.100° D.120°
    3.估算的值是在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    4.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=(  )

    A.12 B.8 C.4 D.3
    5.如果解关于x的分式方程时出现增根,那么m的值为
    A.-2 B.2 C.4 D.-4
    6.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )
    A.80 B.被抽取的80名初三学生
    C.被抽取的80名初三学生的体重 D.该校初三学生的体重
    7.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是(  )

    A.①② B.②③ C.①④ D.③④
    8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )

    A.3:4 B.9:16 C.9:1 D.3:1
    9.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为(  )
    A. B. C. D.
    10.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为(  )

    A.2 B.3 C.4 D.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个多项式与的积为,那么这个多项式为 .
    12.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____
    13.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
    14.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.

    15.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为________cm
    16.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.

    18.(8分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.
    (1)求这条抛物线的表达式和顶点P的坐标;
    (2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;
    (3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.

    19.(8分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )

    A.40° B.55° C.65° D.75°
    20.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
    21.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
    (1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
    (2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0 22.(10分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.

    23.(12分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
    (1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
    (2)求证:
    (3)若BC=AB,求tan∠CDF的值.

    24.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
    (1)求y与x之间的函数关系式;
    (2)直接写出当x>0时,不等式x+b>的解集;
    (3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    分析:
    详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得: ,
    即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.
    点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.
    2、B
    【解析】
    根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
    【详解】
    解:∵将△ABC绕点A顺时针旋转得到△ADE,
    ∴△ABC≌△ADE,
    ∴∠B=∠D,
    ∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
    ∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
    ∴∠CFD=∠B+∠BEF=90°,
    故选:B.
    【点睛】
    本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
    3、C
    【解析】
    求出<<,推出4<<5,即可得出答案.
    【详解】
    ∵<<,
    ∴4<<5,
    ∴的值是在4和5之间.
    故选:C.
    【点睛】
    本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
    4、C
    【解析】
    过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
    【详解】
    延长EP、FP分别交AB、BC于G、H,

    则由PD∥AB,PE∥BC,PF∥AC,可得,
    四边形PGBD,EPHC是平行四边形,
    ∴PG=BD,PE=HC,
    又△ABC是等边三角形,
    又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
    ∴PF=PG=BD,PD=DH,
    又△ABC的周长为12,
    ∴PD+PE+PF=DH+HC+BD=BC=×12=4,
    故选C.
    【点睛】
    本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    5、D
    【解析】
    ,去分母,方程两边同时乘以(x﹣1),得:
    m+1x=x﹣1,由分母可知,分式方程的增根可能是1.
    当x=1时,m+4=1﹣1,m=﹣4,
    故选D.
    6、C
    【解析】
    总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
    【详解】
    样本是被抽取的80名初三学生的体重,
    故选C.
    【点睛】
    此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    7、B
    【解析】
    根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
    【详解】
    解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
    将A(1,2)代入y=ax2+bx,则2=9a+1b
    ∴b=,
    ∴a﹣b=a﹣()=4a﹣>-,故②正确;
    由正弦定义sinα=,则③正确;
    不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
    则满足条件x范围为x≥1或x≤0,则④错误.
    故答案为:B.
    【点睛】
    二次函数的图像,sinα公式,不等式的解集.
    8、B
    【解析】
    可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴DC∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=3:1,
    ∴DE:DC=3:4,
    ∴DE:AB=3:4,
    ∴S△DFE:S△BFA=9:1.
    故选B.
    9、D
    【解析】
    根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
    【详解】
    由题意可得:,
    故选D.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    10、C
    【解析】
    根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,
    主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.
    故选C.
    【点睛】
    错因分析  容易题,失分原因:未掌握通过三视图还原几何体的方法.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    试题分析:依题意知
    =
    考点:整式运算
    点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
    12、1.
    【解析】
    先根据概率公式得到,解得.
    【详解】
    根据题意得,
    解得.
    故答案为:.
    【点睛】
    本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.
    13、.
    【解析】
    分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.
    【详解】
    有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.
    故答案为
    【点睛】
    考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
    14、
    【解析】
    解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
    15、15
    【解析】
    如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,
    ∴∠ADB=90°,BD=CD=30cm,
    ∴AD=(cm),
    连接圆心O和切点E,则∠BEO=90°,
    又∵OD=OE,OB=OB,
    ∴△BEO≌△BDO,
    ∴BE=BD=30cm,
    ∴AE=AB-BE=50-30=20cm,
    设OD=OE=x,则AO=40-x,
    在Rt△AOE中,由勾股定理可得:,
    解得:(cm).
    即能截得的最大圆的半径为15cm.
    故答案为:15.

    点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.
    16、1
    【解析】
    ∵骑车的学生所占的百分比是×100%=35%,
    ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
    ∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
    故答案为1.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
    18、(1)(1,4)(2)(0,)或(0,-1)
    【解析】
    试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;
    (2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可 ;
    (3)分情况进行讨论即可得.
    试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,
    ∵OA=OC,∴OA=3,∴A(3,0),
    ∵A、B关于x=1对称,∴B(-1,0),
    ∵A、B在抛物线y=ax2+bx+3上,
    ∴ ,∴ ,
    ∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,
    ∴顶点P(1,4);
    (2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,
    ∵OC//PM,∴∠PMC=∠MCO,
    ∴tan∠PMC=tan∠MCO= = ;
    (3)Q在C点的下方,∠BCQ=∠CMP,
    CM=,PM=4,BC=,
    ∴或 ,
    ∴CQ=或4,
    ∴Q1(0,),Q2(0,-1).

    19、C.
    【解析】
    试题分析:由作图方法可得AG是∠CAB的角平分线,
    ∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,
    故选C.
    考点:作图—基本作图.
    20、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.
    【解析】
    (1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
    (2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.
    【详解】
    (1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得:
    ,
    解得: .
    答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.
    (2)解:设大货车有m辆,则小货车10-m辆,依题可得:
    4m+(10-m)≥33
    m≥0
    10-m≥0
    解得:≤m≤10,
    ∴m=8,9,10;
    ∴当大货车8辆时,则小货车2辆;
    当大货车9辆时,则小货车1辆;
    当大货车10辆时,则小货车0辆;
    设运费为W=130m+100(10-m)=30m+1000,
    ∵k=30〉0,
    ∴W随x的增大而增大,
    ∴当m=8时,运费最少,
    ∴W=130×8+100×2=1240(元),
    答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.
    【点睛】
    考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.
    21、(1)甲种服装最多购进75件,(2)见解析.
    【解析】
    (1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
    (2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    (1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
    答:甲种服装最多购进75件,
    (2)设总利润为W元,
    W=(120-80-a)x+(90-60)(100-x)
    即w=(10-a)x+1.
    ①当0<a<10时,10-a>0,W随x增大而增大,
    ∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
    ②当a=10时,所以按哪种方案进货都可以;
    ③当10<a<20时,10-a<0,W随x增大而减小.
    当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
    【点睛】
    本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
    22、(1)证明见解析;(2).
    【解析】
    试题分析:利用矩形角相等的性质证明△DAE∽△AMB.
    试题解析:
    (1)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠DAE=∠AMB,
    又∵∠DEA=∠B=90°,
    ∴△DAE∽△AMB.
    (2)由(1)知△DAE∽△AMB,
    ∴DE:AD=AB:AM,
    ∵M是边BC的中点,BC=6,
    ∴BM=3,
    又∵AB=4,∠B=90°,
    ∴AM=5,
    ∴DE:6=4:5,
    ∴DE=.
    23、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
    【解析】
    试题分析:
    (1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
    (2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
    (3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
    可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
    试题解析:
    (1)∠CBD与∠CEB相等,理由如下:
    ∵BC切⊙O于点B,
    ∴∠CBD=∠BAD,
    ∵∠BAD=∠CEB,
    ∴∠CEB=∠CBD,
    (2)∵∠C=∠C,∠CEB=∠CBD,
    ∴∠EBC=∠BDC,
    ∴△EBC∽△BDC,
    ∴;

    (3)设AB=2x,∵BC=AB,AB是直径,
    ∴BC=3x,OB=OD=x,
    ∵∠ABC=90°,
    ∴OC=x,
    ∴CD=(-1)x,
    ∵AO=DO,
    ∴∠CDF=∠A=∠DBF,
    ∴△DCF∽△BCD,
    ∴==,
    ∵tan∠DBF==,
    ∴tan∠CDF=.
    点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
    24、(1);(2)x>1;(3)P(﹣,0)或(,0)
    【解析】
    分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
    (2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
    (3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
    详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
    ∴A(1,3),
    把A(1,3)代入双曲线y=,可得k=1×3=3,
    ∴y与x之间的函数关系式为:y=;
    (2)∵A(1,3),
    ∴当x>0时,不等式x+b>的解集为:x>1;
    (3)y1=﹣x+4,令y=0,则x=4,
    ∴点B的坐标为(4,0),
    把A(1,3)代入y2=x+b,可得3=+b,
    ∴b=,
    ∴y2=x+,
    令y2=0,则x=﹣3,即C(﹣3,0),
    ∴BC=7,
    ∵AP把△ABC的面积分成1:3两部分,
    ∴CP=BC=,或BP=BC=
    ∴OP=3﹣=,或OP=4﹣=,
    ∴P(﹣,0)或(,0).
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.

    相关试卷

    2024年浙江省杭州市下城区启正中学中考数学三模试卷:

    这是一份2024年浙江省杭州市下城区启正中学中考数学三模试卷,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市下城区朝晖中学2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份浙江省杭州市下城区朝晖中学2021-2022学年中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了下列运算正确的是,若点M等内容,欢迎下载使用。

    2022年浙江省杭州市朝晖中学中考数学模拟精编试卷含解析:

    这是一份2022年浙江省杭州市朝晖中学中考数学模拟精编试卷含解析,共24页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map