2022年浙江省奉化市溪口中学中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
2.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
3.下列各式计算正确的是( )
A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
4.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
5.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为( )
A. B. C. D.
6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
A.= B.=
C.= D.=
7.方程的解是( ).
A. B. C. D.
8.若代数式有意义,则实数x的取值范围是( )
A.x=0 B.x=2 C.x≠0 D.x≠2
9.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为
A.1 B. C. D.
10.6的绝对值是( )
A.6 B.﹣6 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若n边形的内角和是它的外角和的2倍,则n= .
12.关于x的不等式组的整数解有4个,那么a的取值范围( )
A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4
13.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.
14.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
15.分解因式:4m2﹣16n2=_____.
16.若一个多边形的内角和为1080°,则这个多边形的边数为__________.
三、解答题(共8题,共72分)
17.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
18.(8分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=
(1)求a,k的值及点B的坐标;
(2)观察图象,请直接写出不等式ax﹣1≥的解集;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
19.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
(1)如图1,当0<t<2时,求证:DF∥CB;
(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
20.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m= .半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
21.(8分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
(1)求证:△ABE≌△DCF;
(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.
22.(10分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.
23.(12分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.
24.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
2、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
3、B
【解析】
根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
【详解】
A.a2与2a3不是同类项,故A不正确;
B.a•a2=a3,正确;
C.原式=a4,故C不正确;
D.原式=a6,故D不正确;
故选:B.
【点睛】
此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
4、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
5、D
【解析】
连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.
【详解】
解:连接EB,
由圆周角定理可知:∠B=90°,
设⊙O的半径为r,
由垂径定理可知:AC=BC=4,
∵CD=2,
∴OC=r-2,
∴由勾股定理可知:r2=(r-2)2+42,
∴r=5,
BCE中,由勾股定理可知:CE=2,
∴cos∠ECB==,
故选D.
【点睛】
本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.
6、B
【解析】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
【详解】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
故选B.
【点睛】
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
7、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
8、D
【解析】
根据分式的分母不等于0即可解题.
【详解】
解:∵代数式有意义,
∴x-2≠0,即x≠2,
故选D.
【点睛】
本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
9、C
【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN∧的中点,
∴∠BON=30 °,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故选:C.
10、A
【解析】
试题分析:1是正数,绝对值是它本身1.故选A.
考点:绝对值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2), 外角和=360º
所以,由题意可得180(n-2)=2×360º
解得:n=6
12、C
【解析】
分析:先根据一元一次不等式组解出x的取值,再根据不等式组
的整数解有4个,求出实数a的取值范围.
详解:
解不等式①,得
解不等式②,得
原不等式组的解集为
∵只有4个整数解,
∴整数解为:
故选C.
点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.
13、5
【解析】
作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
【详解】
解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,
设CM=a,
∵AB=AC,
∴BC=2CM=2a,
∵tan∠ACB=2,
∴=2,
∴AM=2a,
由勾股定理得:AC=a,
S△BDC=BC•DH=10,
•2a•DH=10,
DH=,
∵∠DHM=∠HMG=∠MGD=90°,
∴四边形DHMG为矩形,
∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
∵∠ADC=90°=∠ADG+∠CDG,
∴∠ADG=∠CDH,
在△ADG和△CDH中,
∵,
∴△ADG≌△CDH(AAS),
∴DG=DH=MG=,AG=CH=a+,
∴AM=AG+MG,
即2a=a++,
a2=20,
在Rt△ADC中,AD2+CD2=AC2,
∵AD=CD,
∴2AD2=5a2=100,
∴AD=5或−5(舍),
故答案为5.
【点睛】
本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
14、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
15、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
16、1
【解析】
根据多边形内角和定理:(n﹣2)•110 (n≥3)可得方程110(x﹣2)=1010,再解方程即可.
【详解】
解:设多边形边数有x条,由题意得:
110(x﹣2)=1010,
解得:x=1,
故答案为:1.
【点睛】
此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)AE=2时,△AEF的面积最大.
【解析】
(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
【详解】
(1)证明:∵四边形CEFG是正方形,∴CE=EF.
∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
∴∠FEH=∠DCE.
在△FEH和△ECD中,
,
∴△FEH≌△ECD,
∴FH=ED.
(2)解:设AE=a,则ED=FH=4-a,
∴S△AEF=AE·FH=a(4-a)=- (a-2)2+2,
∴当AE=2时,△AEF的面积最大.
【点睛】
本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.
18、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
【解析】
1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
【详解】
解:(1)
过A作AE⊥x轴,交x轴于点E,
在Rt△AOE中,OA=,tan∠AOC=,
设AE=x,则OE=3x,
根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
解得:x=1或x=﹣1(舍去),
∴OE=3,AE=1,即A(3,1),
将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
将A坐标代入反比例解析式得:1=,即k=3,
联立一次函数与反比例解析式得:,
消去y得: x﹣1=,
解得:x=﹣或x=3,
将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
(2)由A(3,1),B(﹣,﹣2),
根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
(3)显然P与O重合时,△PDC∽△ODC;
当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
∵∠PCD=∠COD=90°,∠PCD=∠CDO,
∴△PDC∽△CDO,
∵∠PCO+∠CPO=90°,
∴∠DCO=∠CPO,
∵∠POC=∠COD=90°,
∴△PCO∽△CDO,
∴=,
对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
∴C(,0),D(0,﹣1),即OC=,OD=1,
∴=,即OP=,
此时P坐标为(0,),
综上,满足题意P的坐标为(0,)或(0,0).
【点睛】
此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
19、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.
【详解】
(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).
【点睛】
本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
20、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
【解析】
(1)根据题意由勾股定理即可解答
(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
【详解】
(1)当半圆与数轴相切时,AB⊥OB,
由勾股定理得m= ,
故答案为 .
(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
当O、A、B三点在数轴上时,m=7+4=11,
∴半圆D与数轴有两个公共点时,m的取值范围为.
故答案为.
②如图,连接DC,当BC=2时,
∵BC=CD=BD=2,
∴△BCD为等边三角形,
∴∠BDC=60°,
∴∠ADC=120°,
∴扇形ADC的面积为 ,
,
∴△AOB与半圆D的公共部分的面积为 ;
(3)如图1,
当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
解得x= ,OH= ,AH= ,
∴tan∠AOB=,
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,
设BH=x,则72﹣(4﹣x)2=42﹣x2,
解得x= ,OH=,AH=,
∴tan∠AOB=.
综合以上,可得tan∠AOB的值为或.
【点睛】
此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
21、(1)证明见解析;(2)证明见解析
【解析】
(1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
(2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
证明:(1)如图,∵AB∥CD,
∴∠B=∠C.
∵BF=CE
∴BE=CF
∵在△ABE与△DCF中,
,
∴△ABE≌△DCF(SAS);
(2)如图,连接AF、DE.
由(1)知,△ABE≌△DCF,
∴AE=DF,∠AEB=∠DFC,
∴∠AEF=∠DFE,
∴AE∥DF,
∴以A、F、D、E为顶点的四边形是平行四边形.
22、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.
【解析】
(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;
(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;
(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.
【详解】
解:(1)60+20=80(km),
(h)
∴连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h.
(2)设所求函数表达式为y=kx+b(k≠0),
将点(0,60)、代入y=kx+b,
得: 解得:
∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为
(3)设线段ED对应的函数表达式为y=mx+n(m≠0)
将点代入y=mx+n,
得: 解得:
∴线段ED对应的函数表达式为
解方程组得
∴机场大巴与货车相遇地到机场C的路程为km.
【点睛】
本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
23、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
【解析】
(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
【详解】
解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
∵×100=31%,
∴图①中m的值为31.
故答案为50、31;
(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
∴这组数据的众数为4;
∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
∴这组数据的中位数是3;
由条形统计图可得=3.1,
∴这组数据的平均数是3.1.
(Ⅲ)1500×18%=410(人).
答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
【详解】
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=AB•BF=AF•BH,
∴AB•BF=AF•BH,
∴4×3=5BH,
∴BH=.
【点睛】
此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
浙江省奉化市溪口中学2023-2024学年数学八上期末考试模拟试题含答案: 这是一份浙江省奉化市溪口中学2023-2024学年数学八上期末考试模拟试题含答案,共7页。试卷主要包含了下列各数中,是无理数的是,如果在y轴上,那么点P的坐标是,下列说法,下列说法正确的是,如图,是的角平分线,,交于点,已知正比例函数y=kx,分式的值为0,则等内容,欢迎下载使用。
浙江省奉化市溪口中学2022-2023学年七年级数学第二学期期末学业质量监测模拟试题含答案: 这是一份浙江省奉化市溪口中学2022-2023学年七年级数学第二学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列命题中,真命题是,若分式有意义,则a的取值范围为,下列说法中正确的是,下列图象能表示一次函数的是等内容,欢迎下载使用。
浙江省嘉兴重点中学2022-2023学年中考数学全真模拟试卷含解析: 这是一份浙江省嘉兴重点中学2022-2023学年中考数学全真模拟试卷含解析,共14页。