开学活动
搜索
    上传资料 赚现金

    2022年天津市宝坻区达标名校中考数学五模试卷含解析

    2022年天津市宝坻区达标名校中考数学五模试卷含解析第1页
    2022年天津市宝坻区达标名校中考数学五模试卷含解析第2页
    2022年天津市宝坻区达标名校中考数学五模试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年天津市宝坻区达标名校中考数学五模试卷含解析

    展开

    这是一份2022年天津市宝坻区达标名校中考数学五模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重,若,则x-y的正确结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
    A. B. C. D.
    2.sin60°的值为(  )
    A. B. C. D.
    3.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为(  )
    A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
    4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是(  )

    A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
    B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
    C.先后两次掷一枚质地均匀的硬币,两次都出现反面
    D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
    5.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )

    A.30 B.40 C.60 D.80
    6.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是(  )
    A.2、40 B.42、38 C.40、42 D.42、40
    7.用加减法解方程组时,若要求消去,则应( )
    A. B. C. D.
    8.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是(  )

    A.135° B.120° C.60° D.45°
    9.若,则x-y的正确结果是( )
    A.-1 B.1 C.-5 D.5
    10.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若代数式在实数范围内有意义,则x的取值范围是_______.
    12.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    13.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.

    14.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.

    15.写出一个大于3且小于4的无理数:___________.
    16.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.

    18.(8分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.
    (1)求证:PB是⊙O的切线;
    (2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为   时,四边形ADPB为菱形,当弧CD长为   时,四边形ADCB为矩形.

    19.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.

    20.(8分)如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    21.(8分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:
    (1)这两种书的单价.
    (2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?
    22.(10分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
    (1)A组的频数a比B组的频数b小24,样本容量   ,a为   :
    (2)n为   °,E组所占比例为   %:
    (3)补全频数分布直方图;
    (4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有   名.

    23.(12分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
    (1)求线段的长(用含的代数式表示);
    (2)求时,求与之间的函数解析式,并写出的取值范围;
    (3)当时,直接写出的取值范围.

    24. “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
    根据所给信息,解答以下问题:
    (1)在扇形统计图中,C对应的扇形的圆心角是_____度;
    (2)补全条形统计图;
    (3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
    (4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    圆柱体的底面积为:π×()2,
    ∴矿石的体积为:π×()2h= .
    故答案为.
    2、B
    【解析】
    解:sin60°=.故选B.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    7490000=7.49×106.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
    【详解】
    解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
    A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
    B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
    C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
    D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
    5、B
    【解析】
    过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
    【详解】
    过点A作AM⊥x轴于点M,如图所示.

    设OA=a,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a,a).
    ∵点A在反比例函数y=的图象上,
    ∴a•a=a2=48,
    解得:a=1,或a=-1(舍去).
    ∴AM=8,OM=6,OB=OA=1.
    ∵四边形OACB是菱形,点F在边BC上,
    ∴S△AOF=S菱形OBCA=OB•AM=2.
    故选B.
    【点睛】
    本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    6、D
    【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
    【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
    将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
    故选D.
    【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
    7、C
    【解析】
    利用加减消元法消去y即可.
    【详解】
    用加减法解方程组时,若要求消去y,则应①×5+②×3,
    故选C
    【点睛】
    此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    8、B
    【解析】
    易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAF=∠DAF,
    ∴△ABF≌△ADF,
    ∴∠AFD=∠AFB,
    ∵CB=CE,
    ∴∠CBE=∠CEB,
    ∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
    ∴∠CBE=15°,
    ∵∠ACB=45°,
    ∴∠AFB=∠ACB+∠CBE=60°.
    ∴∠AFE=120°.
    故选B.
    【点睛】
    此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
    9、A
    【解析】
    由题意,得
    x-2=0,1-y=0,
    解得x=2,y=1.
    x-y=2-1=-1,
    故选:A.
    10、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    解:∵在实数范围内有意义,
    ∴x-1≥2,
    解得x≥1.
    故答案为x≥1.
    本题考查的是二次根式有意义的条件,即被开方数大于等于2.
    12、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    13、2.
    【解析】
    由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
    【详解】
    解:在Rt△BCD中,∵tan∠CBD==,
    ∴设CD=3a、BC=4a,
    则BD=AD=5a,
    ∴AC=AD+CD=5a+3a=8a,
    在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
    解得:a= 或a=-(舍),
    则BD=5a=2,
    故答案为2.
    【点睛】
    本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
    14、π.
    【解析】
    由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.
    【详解】
    :∵△ABC为等边三角形,
    ∴AB=AC,∠C=∠CAB=60°,
    又∵AE=CF,
    在△ABE和△CAF中,

    ∴△ABE≌△CAF(SAS),
    ∴∠ABE=∠CAF.
    又∵∠APE=∠BPF=∠ABP+∠BAP,
    ∴∠APE=∠BAP+∠CAF=60°.
    ∴∠APB=180°-∠APE=120°.
    ∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,
    又∵AB=6,
    ∴OA=2,
    点P的路径是l=,
    故答案为.
    【点睛】
    本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.
    15、如等,答案不唯一.
    【解析】
    本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.
    16、CD的中点
    【解析】
    根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
    【详解】
    ∵△ADE旋转后能与△BEC重合,
    ∴△ADE≌△BEC,
    ∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
    ∴∠AED+∠BEC=90°,
    ∴∠DEC=90°,
    ∴△DEC是等腰直角三角形,
    ∴D与E,E与C是对应顶点,
    ∵CD的中点到D,E,C三点的距离相等,
    ∴旋转中心是CD的中点,
    故答案为:CD的中点.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.

    三、解答题(共8题,共72分)
    17、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得:

    相关试卷

    天津市五区县达标名校2022年中考数学仿真试卷含解析:

    这是一份天津市五区县达标名校2022年中考数学仿真试卷含解析,共24页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。

    天津市蓟州区第三联合区重点达标名校2021-2022学年中考数学五模试卷含解析:

    这是一份天津市蓟州区第三联合区重点达标名校2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了估计﹣1的值在,下列计算正确的是等内容,欢迎下载使用。

    天津市宝坻区达标名校2021-2022学年中考数学最后一模试卷含解析:

    这是一份天津市宝坻区达标名校2021-2022学年中考数学最后一模试卷含解析,共23页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map