|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析01
    2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析02
    2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析

    展开
    这是一份2022年岳阳市湘阴县重点名校中考数学全真模拟试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,某校八,下列四个实数中是无理数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.要使式子有意义,x的取值范围是(  )
    A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠0
    2.方程的解是( ).
    A. B. C. D.
    3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
    A.众数 B.方差 C.平均数 D.中位数
    4.内角和为540°的多边形是( )
    A. B. C. D.
    5.下列各数:π,sin30°,﹣ ,其中无理数的个数是(  )
    A.1个 B.2个 C.3个 D.4个
    6.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是(  )
    A.38 B.39 C.40 D.42
    7.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为(  )
    A.172 B.171 C.170 D.168
    8.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    9.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )

    A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
    10.下列四个实数中是无理数的是( )
    A.2.5 B. C.π D.1.414
    11.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是(  )

    A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0
    12.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为(  )

    A.85° B.75° C.60° D.30°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
    14.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.

    15.因式分解: .
    16.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.

    17.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.

    18.已知一个多边形的每一个内角都是,则这个多边形是_________边形.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.





    单价(元/米2)



    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    20.(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (Ⅰ)图①中的值为 ;
    (Ⅱ)求统计的这组数据的平均数、众数和中位数;
    (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
    21.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    22.(8分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    23.(8分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.

    24.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.

    25.(10分)如图,△ABC中,∠C=90°,∠A=30°.用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分∠CBA.

    26.(12分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.

    27.(12分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).

    (1)在,,中,正方形ABCD的“关联点”有_____;
    (2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
    (3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.
    【详解】
    根据题意得:,
    解得:x≥-1且x≠1.
    故选:D.
    【点睛】
    本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
    2、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    3、D
    【解析】
    根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故本题选:D.
    【点睛】
    本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
    4、C
    【解析】
    试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
    考点:多边形内角与外角.
    5、B
    【解析】
    根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
    【详解】
    sin30°=,=3,故无理数有π,-,
    故选:B.
    【点睛】
    本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
    6、B
    【解析】
    根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
    【详解】
    解:由于共有6个数据,
    所以中位数为第3、4个数的平均数,即中位数为=39,
    故选:B.
    【点睛】
    本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
    7、C
    【解析】
    先把所给数据从小到大排列,然后根据中位数的定义求解即可.
    【详解】
    从小到大排列:
    150,164,168,168,,172,176,183,185,
    ∴中位数为:(168+172)÷2=170.
    故选C.
    【点睛】
    本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
    8、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    9、D
    【解析】
    由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
    【详解】
    A正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,AD=AD,∠ADB=∠ADC,
    ∴△ABD≌△ACD(ASA);
    B正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,∠B=∠C,AD=AD
    ∴△ABD≌△ACD(AAS);
    C正确;理由:
    在△ABD和△ACD中,
    ∵AB=AC,∠1=∠2,AD=AD,
    ∴△ABD≌△ACD(SAS);
    D不正确,由这些条件不能判定三角形全等;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
    10、C
    【解析】
    本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.
    解:A、2.5是有理数,故选项错误;
    B、是有理数,故选项错误;
    C、π是无理数,故选项正确;
    D、1.414是有理数,故选项错误.
    故选C.
    11、C
    【解析】
    根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.
    【详解】
    解:由数轴上点的位置,得
    a<﹣4<b<0<c<1<d.
    A、a<﹣4,故A不符合题意;
    B、bd<0,故B不符合题意;
    C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;
    D、b+c<0,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键
    12、B
    【解析】
    分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
    详解:∵AB∥CD,
    ∴∠C=∠ABC=30°,
    又∵CD=CE,
    ∴∠D=∠CED,
    ∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
    ∴∠D=75°.
    故选B.
    点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4.027
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:4 0270 0000用科学记数法表示是4.027×1.
    故答案为4.027×1.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、π+﹣
    【解析】
    试题分析:如图,连接OC,EC,由题意得△OCD≌△OCE,OC⊥DE,DE==,所以S四边形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以阴影部分的面积为:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案为.

    考点:扇形面积的计算.
    15、;
    【解析】
    根据所给多项式的系数特点,可以用十字相乘法进行因式分解.
    【详解】
    x2﹣x﹣12=(x﹣4)(x+3).
    故答案为(x﹣4)(x+3).
    16、11π﹣.
    【解析】
    阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
    【详解】
    解:连接OM,ON.

    ∴OM=3,OC=6,


    ∴扇形ECF的面积
    △ACD的面积
    扇形AOM的面积
    弓形AN的面积
    △OCM的面积
    ∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
    故答案为.
    【点睛】
    考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
    17、2.
    【解析】
    由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
    【详解】
    解:在Rt△BCD中,∵tan∠CBD==,
    ∴设CD=3a、BC=4a,
    则BD=AD=5a,
    ∴AC=AD+CD=5a+3a=8a,
    在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
    解得:a= 或a=-(舍),
    则BD=5a=2,
    故答案为2.
    【点睛】
    本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
    18、十
    【解析】
    先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
    【详解】
    解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.
    故答案为十.
    【点睛】
    本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    20、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
    【解析】
    分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
    (Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
    (Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
    解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
    (Ⅱ)观察条形统计图,
    ∵,
    ∴这组数据的平均数是1.52.
    ∵在这组数据中,1.8出现了16次,出现的次数最多,
    ∴这组数据的众数为1.8.
    ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
    ∴这组数据的中位数为1.5.
    (Ⅲ)∵在所抽取的样本中,质量为的数量占.
    ∴由样本数据,估计这2500只鸡中,质量为的数量约占.
    有.
    ∴这2500只鸡中,质量为的约有200只.
    点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    21、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    22、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    23、见解析.
    【解析】
    (1)画出⊙O的两条直径,交点即为圆心O.
    (2)作直线AO交⊙O于F,直线BF即为所求.
    【详解】
    解:作图如下:
    (1);
    (2).
    【点睛】
    本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    24、证明见解析.
    【解析】
    【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
    【详解】∵BE=CF,
    ∴BE+EF=CF+EF,
    ∴BF=CE,
    在△ABF和△DCE中

    ∴△ABF≌△DCE(SAS),
    ∴∠GEF=∠GFE,
    ∴EG=FG.
    【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    25、(1)作图见解析;(2)证明见解析.
    【解析】
    (1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;
    (2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.
    【详解】
    (1)解:如图所示,DE就是要求作的AB边上的中垂线;

    (2)证明:∵DE是AB边上的中垂线,∠A=30°,
    ∴AD=BD,
    ∴∠ABD=∠A=30°,
    ∵∠C=90°,
    ∴∠ABC=90°﹣∠A=90°﹣30°=60°,
    ∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,
    ∴∠ABD=∠CBD,
    ∴BD平分∠CBA.
    【点睛】
    考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.
    26、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
    (2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AB=CD,∠A=∠C,
    ∵E、F分别为边AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS);
    (2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
    解:由(1)可得BE=DF,
    又∵AB∥CD,
    ∴BE∥DF,BE=DF,
    ∴四边形BEDF是平行四边形,
    连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
    ∴DF∥AE,DF=AE,
    ∴四边形AEFD是平行四边形,
    ∴EF∥AD,
    ∵∠ADB是直角,
    ∴AD⊥BD,
    ∴EF⊥BD,
    又∵四边形BFDE是平行四边形,
    ∴四边形BFDE是菱形.

    【点睛】
    1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
    27、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
    【解析】
    (1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
    (2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
    (3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
    【详解】
    (1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),

    观察图象可知:正方形ABCD的“关联点”为P2,P3;
    (2)作正方形ABCD的内切圆和外接圆,

    ∴OF=1,,.
    ∵E是正方形ABCD的“关联点”,
    ∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
    ∵点E在直线上,
    ∴点E在线段FG上.
    分别作FF’⊥x轴,GG’⊥x轴,
    ∵OF=1,,
    ∴,.
    ∴.
    根据对称性,可以得出.
    ∴或.
    (3)∵、N(0,1),
    ∴,ON=1.
    ∴∠OMN=60°.
    ∵线段MN上的每一个点都是正方形ABCD
    的“关联点”,
    ①MN与小⊙Q相切于点F,如图3中,

    ∵QF=1,∠OMN=60°,
    ∴.
    ∵,
    ∴.
    ∴.
    ②M落在大⊙Q上,如图4中,

    ∵,,
    ∴.
    ∴.
    综上:.
    【点睛】
    本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.

    相关试卷

    2022届重庆市北碚区重点达标名校中考数学全真模拟试卷含解析: 这是一份2022届重庆市北碚区重点达标名校中考数学全真模拟试卷含解析,共19页。试卷主要包含了计算tan30°的值等于等内容,欢迎下载使用。

    2022届山东省日照市重点名校中考数学全真模拟试卷含解析: 这是一份2022届山东省日照市重点名校中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,如图,在中,,,,则等于,计算,一、单选题等内容,欢迎下载使用。

    2022届山东省青岛4中重点达标名校中考数学全真模拟试卷含解析: 这是一份2022届山东省青岛4中重点达标名校中考数学全真模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,老师在微信群发了这样一个图等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map