2022年陕西省西安市交大附中达标名校中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
2.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
3.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为( )
A. B. C. D.
4.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
5.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )
A.120° B.110° C.100° D.80°
6.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A. B. C. D.
7.下列手机手势解锁图案中,是轴对称图形的是( )
A. B. C. D.
8.2cos 30°的值等于( )
A.1 B. C. D.2
9.已知x+=3,则x2+=( )
A.7 B.9 C.11 D.8
10.若实数m满足,则下列对m值的估计正确的是( )
A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
二、填空题(共7小题,每小题3分,满分21分)
11.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
12.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
13.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.
14.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.
15.因式分解:16a3﹣4a=_____.
16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.
17.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.
三、解答题(共7小题,满分69分)
18.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球
10
9.5
9.5
10
8
9
9.5
9
7
10
4
5.5
10
9.5
9.5
10
篮球
9.5
9
8.5
8.5
10
9.5
10
8
6
9.5
10
9.5
9
8.5
9.5
6
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目
平均数
中位数
众数
排球
8.75
9.5
10
篮球
8.81
9.25
9.5
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
19.(5分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
20.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
21.(10分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
22.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
(1)2014年这种礼盒的进价是多少元/盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
23.(12分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
24.(14分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
因为,所以,因为,故选D.
2、C
【解析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
解得:a=−0.2,b=1.5,c=−2,
即p=−0.2t2+1.5t−2,
当t=−=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
3、D
【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
【详解】
由题意可得:,
故选D.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
4、C
【解析】
分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
详解:∵点I是△ABC的内心,
∴∠BAC=2∠IAC、∠ACB=2∠ICA,
∵∠AIC=124°,
∴∠B=180°﹣(∠BAC+∠ACB)
=180°﹣2(∠IAC+∠ICA)
=180°﹣2(180°﹣∠AIC)
=68°,
又四边形ABCD内接于⊙O,
∴∠CDE=∠B=68°,
故选C.
点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
5、D
【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
【详解】
∵∠DCF=100°,
∴∠DCE=80°,
∵AB∥CD,
∴∠AEF=∠DCE=80°.
故选D.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
6、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
7、D
【解析】
根据轴对称图形与中心对称图形的定义进行判断.
【详解】
A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
8、C
【解析】
分析:根据30°角的三角函数值代入计算即可.
详解:2cos30°=2×=.
故选C.
点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.
9、A
【解析】
根据完全平方公式即可求出答案.
【详解】
∵(x+)2=x2+2+
∴9=2+x2+,
∴x2+=7,
故选A.
【点睛】
本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
10、A
【解析】
试题解析:∵,
∴m2+2+=0,
∴m2+2=-,
∴方程的解可以看作是函数y=m2+2与函数y=-,
作函数图象如图,
在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
当m=-2时y=m2+2=4+2=6,y=-=-=2,
∵6>2,
∴交点横坐标大于-2,
当m=-1时,y=m2+2=1+2=3,y=-=-=4,
∵3<4,
∴交点横坐标小于-1,
∴-2<m<-1.
故选A.
考点:1.二次函数的图象;2.反比例函数的图象.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
【详解】
解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
∴△=2,
∴b2﹣4ac=22﹣4×1×m=2;
∴m=1.
故答案为1.
【点睛】
本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
12、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
13、
【解析】
在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
【详解】
在AB上取BN=BE,连接EN,作PM⊥BC于M.
∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
∵AB=BC,BN=BE,∴AN=EC.
∵∠AEP=90°,∴∠AEB+∠PEC=90°.
∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
故答案为:.
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
14、 (1,0)
【解析】
分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.
详解:
如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.
若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
可知△CDE的周长最小,
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D′O=DO=2,D′B=6,
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BC,有
∴OE=1,
∴点E的坐标为(1,0).
故答案为:(1,0).
点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.
15、4a(2a+1)(2a﹣1)
【解析】
首先提取公因式,再利用平方差公式分解即可.
【详解】
原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),
故答案为4a(2a+1)(2a﹣1)
【点睛】
本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
16、(2n﹣1,2n﹣1).
【解析】
解:∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐标(2n-1,2n-1).
故答案为(2n-1,2n-1).
17、y=
【解析】
设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:
πr2=10π
解得:r=.
∵点P(3a,a)是反比例函y= (k>0)与O的一个交点,
∴3a2=k.
∴a2==4.
∴k=3×4=12,
则反比例函数的解析式是:y=.
故答案是:y=.
点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.
三、解答题(共7小题,满分69分)
18、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
【详解】
解:补全表格成绩:
人数
项目
10
排球
1
1
2
7
5
篮球
0
2
1
10
3
达到优秀的人数约为(人);
故答案为130;
同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
【点睛】
本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
19、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
【详解】
(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.
(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【点睛】
本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
20、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
21、5.5米
【解析】
过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,则AD=CD=x.
在Rt△BCD中,∠CBD=45°,则BD=CD=x.
由题意得,x﹣x=4,
解得:.
答:生命所在点C的深度为5.5米.
22、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
23、⊙O的半径为.
【解析】
如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
【详解】
解:如图,连接OA.交BC于H.
∵点A为的中点,
∴OA⊥BD,BH=DH=4,
∴∠AHC=∠BHO=90°,
∵,AC=9,
∴AH=3,
设⊙O的半径为r,
在Rt△BOH中,∵BH2+OH2=OB2,
∴42+(r﹣3)2=r2,
∴r=,
∴⊙O的半径为.
【点睛】
本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
24、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.
【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)由题意可得:p≤q,进而得出x的取值范围;
(3)①利用顶点式求出函数最值得出答案;
②利用二次函数的增减性得出答案即可.
【详解】
(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;
(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵当x时,y随x的增加而增加.
又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.
【点睛】
本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.
陕西省西安市交大附中达标名校2022年十校联考最后数学试题含解析: 这是一份陕西省西安市交大附中达标名校2022年十校联考最后数学试题含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。
2022届陕西省西安市交大附中达标名校中考冲刺卷数学试题含解析: 这是一份2022届陕西省西安市交大附中达标名校中考冲刺卷数学试题含解析,共19页。试卷主要包含了如果等内容,欢迎下载使用。
2022届陕西省西安市交大附中市级名校中考试题猜想数学试卷含解析: 这是一份2022届陕西省西安市交大附中市级名校中考试题猜想数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,在数轴上表示不等式2,下列运算正确的是等内容,欢迎下载使用。