终身会员
搜索
    上传资料 赚现金

    2022年陕西省西安市长安区中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022年陕西省西安市长安区中考猜题数学试卷含解析第1页
    2022年陕西省西安市长安区中考猜题数学试卷含解析第2页
    2022年陕西省西安市长安区中考猜题数学试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年陕西省西安市长安区中考猜题数学试卷含解析

    展开

    这是一份2022年陕西省西安市长安区中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列图形中,是轴对称图形的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(  )
    A.11 B.16 C.17 D.16或17
    2.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
    A. B. C. D.
    3.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是(  )

    A.y1 B.y2 C.y3 D.y4
    4.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是(  )

    A.4 B.1 C.2 D.3
    5.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为(  )
    A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011
    6.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    7. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是(  )

    A.2 B. C.5 D.
    8.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    9.下列计算正确的是
    A. B. C. D.
    10.下列图形中,是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.分解因式:x2y﹣y=_____.
    12.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.

    13.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .

    14.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.

    15.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 .
    16.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.

    三、解答题(共8题,共72分)
    17.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
    (1)甲选择座位W的概率是多少;
    (2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
    18.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
    (1)求两次传球后,球恰在B手中的概率;
    (2)求三次传球后,球恰在A手中的概率.
    19.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    20.(8分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.
    (1)设∠ONP=α,求∠AMN的度数;
    (2)写出线段AM、BC之间的等量关系,并证明.

    21.(8分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1
    22.(10分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
    本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
    23.(12分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
    补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
    24.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:

    (1)调查了________名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;
    (4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.
    故选项D正确.
    考点:三角形三边关系;分情况讨论的数学思想
    2、B
    【解析】
    先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
    【详解】
    由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
    【点睛】
    本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
    3、A
    【解析】
    由图象的点的坐标,根据待定系数法求得解析式即可判定.
    【详解】
    由图象可知:
    抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
    抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
    抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
    抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
    综上,解析式中的二次项系数一定小于1的是y1
    故选A.
    【点睛】
    本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
    4、D
    【解析】
    根据垂径定理,圆周角的性质定理即可作出判断.
    【详解】
    ∵P是弦AB的中点,CD是过点P的直径.
    ∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
    ∠AOB=2∠AOD=4∠ACD,故②正确.
    P是OD上的任意一点,因而④不一定正确.
    故正确的是:①②③.
    故选:D.
    【点睛】
    本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
    5、B
    【解析】
    科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.
    【详解】
    解:929亿=92900000000=9.29×11.
    故选B.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    6、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    7、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    8、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    9、B
    【解析】
    试题分析:根据合并同类项的法则,可知,故A不正确;
    根据同底数幂的除法,知,故B正确;
    根据幂的乘方,知,故C不正确;
    根据完全平方公式,知,故D不正确.
    故选B.
    点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
    10、B
    【解析】
    分析:根据轴对称图形的概念求解.
    详解:A、不是轴对称图形,故此选项不合题意;
    B、是轴对称图形,故此选项符合题意;
    C、不是轴对称图形,故此选项不合题意;
    D、不是轴对称图形,故此选项不合题意;
    故选B.
    点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y(x+1)(x﹣1)
    【解析】
    观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.
    【详解】
    解:x2y﹣y
    =y(x2﹣1)
    =y(x+1)(x﹣1).
    故答案为:y(x+1)(x﹣1).
    【点睛】
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    12、135
    【解析】
    试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.
    考点:解直角三角形的应用.
    13、
    【解析】
    分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
    由图象可知,此时.
    14、
    【解析】
    利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
    【详解】
    ∵AE=EC,BD=CD,
    ∴DE∥AB,DE=AB,
    ∴△EDC∽△ABC,
    ∴=,
    故答案是:.
    【点睛】
    考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
    15、9.6×1.
    【解析】
    将9600000用科学记数法表示为9.6×1.
    故答案为9.6×1.
    16、 (24001,0)
    【解析】
    分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出 然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标
    详解:∵直线l:

    ∵NM⊥x轴,M1N⊥直线l,


    同理,
    …,

    所以,点的坐标为
    点M2000的坐标为(24001,0).
    故答案为:(24001,0).
    点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.

    三、解答题(共8题,共72分)
    17、(1);(2)
    【解析】
    (1)根据概率公式计算可得;
    (2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.
    【详解】
    解:(1)由于共有A、B、W三个座位,
    ∴甲选择座位W的概率为,
    故答案为:;
    (2)画树状图如下:

    由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,
    所以P(甲乙相邻)==.
    【点睛】
    此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1);(2) .
    【解析】
    试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
    试题解析:
    解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
    (2)树状图如下,

    由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
    考点:用列举法求概率.
    19、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    20、(1)45°(2),理由见解析
    【解析】
    (1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;
    (2)由等腰直角三角形的性质和正方形的性质可得,,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得.
    【详解】
    解:(1)如图,连接MP,

    ∵直线l是线段MN的垂直平分线,
    ∴PM=PN,PO⊥MN
    ∴∠PMN=∠PNM=α
    ∴∠MPO=∠NPO=90°-α,
    ∵四边形ABNP是正方形
    ∴AP=PN,∠APN=90°
    ∴AP=MP,∠APO=90°-(90°-α)=α
    ∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
    ∵AP=PM
    ∴,
    ∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
    (2)
    理由如下:
    如图,连接AN,CN,

    ∵直线l是线段MN的垂直平分线,
    ∴CM=CN,
    ∴∠CMN=∠CNM=45°,
    ∴∠MCN=90°
    ∴,
    ∵四边形APNB是正方形
    ∴∠ANB=∠BAN=45°
    ∴,∠MNC=∠ANB=45°
    ∴∠ANM=∠BNC
    又∵
    ∴△CBN∽△MAN


    【点睛】
    本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.
    21、 (1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限
    【解析】
    试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.
    试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1.
    ∵A(1,8)、B(-4,-1)在图象上,
    ∴,
    解得,.
    (1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,
    ∴OC=3
    ∴S△ABC=S△AOC+S△BOC=
    (3)点M在第三象限,点N在第一象限.
    ①若<<0,点M、N在第三象限的分支上,则>,不合题意;
    ②若0<<,点M、N在第一象限的分支上,则>,不合题意;
    ③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.
    考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.
    22、(1)50,30%;(2)不能,理由见解析;(3)P=
    【解析】
    【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;
    (2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;
    (3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.
    【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),
    “89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,
    所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,
    故答案为50,30%;
    (2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;
    (3)由题意得树状图如下

    由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P==.
    【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.
    23、(1)补图见解析;(2)27°;(3)1800名
    【解析】
    (1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
    (2)用360°乘以对应的比例即可求解;
    (3)用总人数乘以对应的百分比即可求解.
    【详解】
    (1)抽取的总人数是:10÷25%=40(人),
    在B类的人数是:40×30%=12(人).

    (2)扇形统计图扇形D的圆心角的度数是:360×=27°;
    (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
    考点:条形统计图、扇形统计图.
    24、50 见解析(3)115.2° (4)
    【解析】
    试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;
    (2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;
    (3)根据圆心角的度数=360 º×它所占的百分比计算;
    (4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.
    解:(1)由题意可知该班的总人数=15÷30%=50(名)
    故答案为50;
    (2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)
    补全条形统计图如图所示:

    (3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,
    故答案为115.2°;
    (4)画树状图如图.

    由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
    所以P(恰好选出一男一女)==.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.

    相关试卷

    2021-2022学年陕西省西安市长安区中考数学押题试卷含解析:

    这是一份2021-2022学年陕西省西安市长安区中考数学押题试卷含解析,共20页。

    2022年陕西省西安市西北工大附中中考猜题数学试卷含解析:

    这是一份2022年陕西省西安市西北工大附中中考猜题数学试卷含解析,共24页。

    2022年陕西省汉中市中考猜题数学试卷含解析:

    这是一份2022年陕西省汉中市中考猜题数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,一次函数的图像不经过的象限是,下列命题正确的是,如图,两个反比例函数y1=,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map