终身会员
搜索
    上传资料 赚现金

    2022年陕西省西安新城区七校联考中考数学押题卷含解析

    立即下载
    加入资料篮
    2022年陕西省西安新城区七校联考中考数学押题卷含解析第1页
    2022年陕西省西安新城区七校联考中考数学押题卷含解析第2页
    2022年陕西省西安新城区七校联考中考数学押题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年陕西省西安新城区七校联考中考数学押题卷含解析

    展开

    这是一份2022年陕西省西安新城区七校联考中考数学押题卷含解析,共20页。试卷主要包含了计算,|﹣3|的值是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )

    A. B. C. D.
    2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    3.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
    A.1 B. C. D.
    4.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    5.一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.七边形
    6.计算:的结果是( )
    A. B.. C. D.
    7.|﹣3|的值是( )
    A.3 B. C.﹣3 D.﹣
    8.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
    A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
    C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
    9.估计﹣÷2的运算结果在哪两个整数之间(  )
    A.0和1 B.1和2 C.2和3 D.3和4
    10.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )
    A. B. C. D.
    11.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )

    A. B. C. D.4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.

    14.计算a10÷a5=_______.
    15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.
    16.已知一组数据,,﹣2,3,1,6的中位数为1,则其方差为____.
    17.(﹣)﹣2﹣(3.14﹣π)0=_____.
    18.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
    (1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
    (2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.

    20.(6分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.
    21.(6分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.

    22.(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
    成绩分组
    频数
    频率
    50≤x<60
    8
    0.16
    60≤x<70
    12
    a
    70≤x<80

    0.5
    80≤x<90
    3
    0.06
    90≤x≤100
    b
    c
    合计

    1
    (1)写出a,b,c的值;
    (2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
    (3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

    23.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.

    24.(10分)如图,中,,于,,为边上一点.

    (1)当时,直接写出  ,  .
    (2)如图1,当,时,连并延长交延长线于,求证:.
    (3)如图2,连交于,当且时,求的值.
    25.(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
    (1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.
    (2)求至少有一辆汽车向左转的概率.
    26.(12分)如图,已知在中,,是的平分线.

    (1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
    (2)判断直线与的位置关系,并说明理由.
    27.(12分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    先求出二次函数的对称轴,结合二次函数的增减性即可判断.
    【详解】
    解:二次函数的对称轴为直线,
    ∵抛物线开口向下,
    ∴当时,y随x增大而增大,
    ∵,

    故答案为:A.
    【点睛】
    本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.
    2、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    3、B
    【解析】
    试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,
    此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.
    故选B.
    考点:1.概率公式;2.完全平方式.
    4、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    6、B
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    解:原式=
    =
    =
    故选;B
    【点睛】
    本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
    7、A
    【解析】
    分析:根据绝对值的定义回答即可.
    详解:负数的绝对值等于它的相反数,

    故选A.
    点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
    8、A
    【解析】
    试题分析:0.001219=1.219×10﹣1.故选A.
    考点:科学记数法—表示较小的数.
    9、D
    【解析】
    先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
    【详解】
    25<32<31,∴5<<1.
    原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
    故选D.
    【点睛】
    本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.
    10、B
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:将360000000用科学记数法表示为:3.6×1.
    故选:B.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    11、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    12、A
    【解析】
    试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
    若旋转角度为11°,则∠ACO=30°+11°=41°.
    ∴∠AOC=180°-∠ACO-∠CAO=90°.
    在等腰Rt△ABC中,AB=4,则AO=OC=2.
    在Rt△AOD1中,OD1=CD1-OC=3,
    由勾股定理得:AD1=.
    故选A.
    考点: 1.旋转;2.勾股定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、7
    【解析】
    首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
    【详解】
    根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
    ∴,
    ∴最多是7个,
    故答案为:7.
    【点睛】
    本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
    14、a1.
    【解析】
    试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
    原式=a10-1=a1,
    故答案为a1.
    考点:同底数幂的除法.
    15、(1,﹣3)
    【解析】
    画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.
    【详解】
    如图所示:

    点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
    故答案是:(1,-3).
    【点睛】
    考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.
    16、3
    【解析】
    试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴,解得x=3,∴数据的平均数=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.
    考点:3.方差;3.中位数.
    17、3.
    【解析】
    试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.
    原式=4-1=3.
    考点:负整数指数幂;零指数幂.
    18、1
    【解析】
    估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.
    【详解】
    因为共摸了200次球,发现有60次摸到黑球,
    所以估计摸到黑球的概率为0.3,
    所以估计这个口袋中黑球的数量为20×0.3=6(个),
    则红球大约有20-6=1个,
    故答案为:1.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)列表见解析,.
    【解析】
    试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
    试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
    小华
    小丽

    -1

    0

    2

    -1

    (-1,-1)

    (-1,0)

    (-1,2)

    0

    (0,-1)

    (0,0)

    (0,2)

    2

    (2,-1)

    (2,0)

    (2,2)

    共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
    ∴P(点M落在如图所示的正方形网格内)==.
    考点:1列表或树状图求概率;2平面直角坐标系.
    20、m的值是12.1.
    【解析】
    根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值
    【详解】
    由题意可得,
    1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)
    解得,m1=0(舍去),m2=12.1,
    即m的值是12.1.
    【点睛】
    本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.
    21、 (1)证明见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
    (2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
    详解:
    (1)证明:连结OC,
    ∵DE与⊙O相切于点C,
    ∴OC⊥DE.
    ∵BD⊥DE,
    ∴OC∥BD. .
    ∴∠1=∠2,
    ∵OB=OC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    即BC平分∠DBA. .

    (2)∵OC∥BD,
    ∴△EBD∽△EOC,△DBM∽△OCM,.
    ∴,
    ∴,
    ∵,设EA=2k,AO=3k,
    ∴OC=OA=OB=3k.
    ∴.
    点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
    22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.
    【解析】
    (1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;
    (2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;
    (3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.
    【详解】
    解:(1)样本人数为:8÷0.16=50(名)
    a=12÷50=0.24,
    70≤x<80的人数为:50×0.5=25(名)
    b=50﹣8﹣12﹣25﹣3=2(名)
    c=2÷50=0.04
    所以a=0.24,b=2,c=0.04;
    (2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:
    1000×0.6=600(人)
    ∴这1000名学生中有600人的竞赛成绩不低于70分;
    (3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B
    从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:

    抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,
    ∴抽取的2名同学来自同一组的概率P==
    【点睛】
    本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.
    23、BD= 2.
    【解析】
    试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
    试题解析:
    ∵∠ACD=∠ABC,
    又∵∠A=∠A,
    ∴△ABC∽△ACD ,
    ∴,
    ∵AC=,AD=1,
    ∴,
    ∴AB=3,
    ∴BD= AB﹣AD=3﹣1=2 .
    点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
    24、(1),;(2)证明见解析;(3).
    【解析】
    (1)利用相似三角形的判定可得,列出比例式即可求出结论;
    (2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;
    (3)作于,根据相似三角形的判定可得,列出比例式可得,设,,,即可求出x的值,根据平行线分线段成比例定理求出,设,,,然后根据勾股定理求出AC,即可得出结论.
    【详解】
    (1)如图1中,当时,.

    ,,


    ,,

    故答案为:,.
    (2)如图中,作交于.

    ,,
    ∴tan∠B=,tan∠ACE= tan∠B=
    ∴BE=2CE,
    ,,设,则,


    ,,



    (3)如图2中,作于.


    ,,







    ,设,,,
    则有,
    解得或(舍弃),

    ,,,
    ,,



    ,设,,,
    在中,,




    【点睛】
    此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.
    25、 (1);(2).
    【解析】
    (1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;
    (2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.
    【详解】
    (1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:

    ∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,
    所以两辆汽车都不直行的概率为;
    (2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等
    ∴P(至少有一辆汽车向左转)=.
    【点睛】
    此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.
    26、(1)见解析;(2)与相切,理由见解析.
    【解析】
    (1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
    (2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
    【详解】
    (1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
    ②作直线,与相交于点,
    ③以为圆心,为半径作圆,如图即为所作;

    (2)与相切,理由如下:
    连接OD,
    为半径,

    是等腰三角形,

    平分,






    为半径,
    与相切.
    【点睛】
    本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
    27、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
    【解析】
    分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
    详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
    根据题意得:

    解得:.
    答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
    (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
    答:打折后购买这批粽子比不打折节省了3640元.
    点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.

    相关试卷

    广西玉林玉州区七校联考2021-2022学年中考数学押题卷含解析:

    这是一份广西玉林玉州区七校联考2021-2022学年中考数学押题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中是有理数的是,若点A,计算的结果为等内容,欢迎下载使用。

    2022年山东省济南七校联考中考数学押题卷含解析:

    这是一份2022年山东省济南七校联考中考数学押题卷含解析,共17页。试卷主要包含了下列各数中,比﹣1大1的是,下列说法,拒绝“餐桌浪费”,刻不容缓等内容,欢迎下载使用。

    2022届陕西省西安新城区七校联考中考联考数学试卷含解析:

    这是一份2022届陕西省西安新城区七校联考中考联考数学试卷含解析,共17页。试卷主要包含了下列各组数中,互为相反数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map