2022年陕西省西安市交通大附属中学中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
2.下列计算中正确的是( )
A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
3.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30° B.15° C.18° D.20°
4.关于的叙述正确的是( )
A.= B.在数轴上不存在表示的点
C.=± D.与最接近的整数是3
5.下列说法正确的是( )
A.“买一张电影票,座位号为偶数”是必然事件
B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定
C.一组数据2,4,5,5,3,6的众数是5
D.一组数据2,4,5,5,3,6的平均数是5
6.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
7.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
8.如图,在中,,,,则等于( )
A. B. C. D.
9.下列命题中,正确的是( )
A.菱形的对角线相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.正方形的对角线不能相等
D.正方形的对角线相等且互相垂直
10.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的方程x2-2x-k=0有两个相等的实数根,则k的值为__________.
12. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
13.若+(y﹣2018)2=0,则x﹣2+y0=_____.
14.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.
15.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)
17.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
三、解答题(共7小题,满分69分)
18.(10分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.
19.(5分)(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°
(2)解不等式组:,并把它的解集在数轴上表示出来.
20.(8分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤 | 每件的售价/元 | 每件的成本/元 |
甲 | 50 | |
乙 | 60 | |
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
21.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.73
23.(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)
24.(14分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
2、C
【解析】
根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
【详解】
A. x2+x2=2x2 ,故不正确;
B. x6÷x3=x3 ,故不正确;
C. (x3)2=x6 ,故正确;
D. x﹣1=,故不正确;
故选C.
【点睛】
本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
3、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
4、D
【解析】
根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
【详解】
选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
选项D,与最接近的整数是=1.
故选D.
【点睛】
本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
5、C
【解析】
根据确定性事件、方差、众数以及平均数的定义进行解答即可.
【详解】
解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;
B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;
C、一组数据2,4,5,5,3,6的众数是5,此选项正确;
D、一组数据2,4,5,5,3,6的平均数是,此选项错误;
故选:C.
【点睛】
本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
7、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
8、A
【解析】
分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
详解:在Rt△ABC中,∵AB=10、AC=8,
∴BC=,
∴sinA=.
故选:A.
点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
9、D
【解析】
根据菱形,平行四边形,正方形的性质定理判断即可.
【详解】
A.菱形的对角线不一定相等, A 错误;
B.平行四边形不是轴对称图形,是中心对称图形,B 错误;
C. 正方形的对角线相等,C错误;
D.正方形的对角线相等且互相垂直,D 正确; 故选:D.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
10、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、-3
【解析】
试题解析:根据题意得:△=(2)2-4×1×(-k)=0,即12+4k=0,
解得:k=-3,
12、
【解析】
根据概率是所求情况数与总情况数之比,可得答案.
【详解】
因为共有六个小组,
所以第五组被抽到的概率是,
故答案为:.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
13、1
【解析】
直接利用偶次方的性质以及二次根式的性质分别化简得出答案.
【详解】
解:∵+(y﹣1018)1=0,
∴x﹣1=0,y﹣1018=0,
解得:x=1,y=1018,
则x﹣1+y0=1﹣1+10180=1+1=1.
故答案为:1.
【点睛】
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
14、
【解析】
连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
【详解】
连接.
∵是的切线,
∴;
∴,
∴当时,线段OP最短,
∴PQ的长最短,
∵在中,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
15、1
【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
【详解】
设购买篮球x个,则购买足球个,
根据题意得:,
解得:.
为整数,
最大值为1.
故答案为1.
【点睛】
本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
16、
【解析】
试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.
试题解析:如图所示:连接BO,CO,
∵正六边形ABCDEF内接于⊙O,
∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,
∴CO∥AB,
在△COW和△ABW中
,
∴△COW≌△ABW(AAS),
∴图中阴影部分面积为:S扇形OBC=.
考点:正多边形和圆.
17、
【解析】
【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
.
故答案为
【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
三、解答题(共7小题,满分69分)
18、原计划每天安装100个座位.
【解析】
根据题意先设原计划每天安装x个座位,列出方程再求解.
【详解】
解:设原计划每天安装个座位,采用新技术后每天安装个座位,
由题意得:.
解得:.
经检验:是原方程的解.
答:原计划每天安装100个座位.
【点睛】
此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
19、 (1)-3;(2).
【解析】
分析:
(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;
(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.
(1)原式=
=
= -3.
(2)
解不等式①得: ,
解不等式②得:,
∴不等式组的解集为:
不等式组的解集在数轴上表示:
点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.
20、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;
(3)求出(2)中各函数最大值,进行比较即可得到结论.
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
21、(1)36 , 40, 1;(2).
【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
(2)画出树状图,根据概率公式求解即可.
【详解】
(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.
(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
的结果有6种,
∴P(M)==.
22、AD的长约为225m,大楼AB的高约为226m
【解析】
首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得 ,然后根据∠ADB的正切表示出AD的长,又由CD=96m,可得方程 ,解此方程即可求得答案.
【详解】
解:设大楼AB的高度为xm,
在Rt△ABC中,∵∠C=32°,∠BAC=92°,
∴ ,
在Rt△ABD中, ,
∴,
∵CD=AC-AD,CD=96m,
∴ ,
解得:x≈226,
∴
答:大楼AB的高度约为226m,AD的长约为225m.
【点睛】
本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.
23、热气球离地面的高度约为1米.
【解析】
作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.
【详解】
解:作AD⊥BC交CB的延长线于D,
设AD为x,
由题意得,∠ABD=45°,∠ACD=35°,
在Rt△ADB中,∠ABD=45°,
∴DB=x,
在Rt△ADC中,∠ACD=35°,
∴tan∠ACD= ,
∴ = ,
解得,x≈1.
答:热气球离地面的高度约为1米.
【点睛】
考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.
24、1+
【解析】
分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.
详解:原式=2×-1+-1+2
=1+.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
陕西省西安市西北大附中2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份陕西省西安市西北大附中2021-2022学年中考数学考试模拟冲刺卷含解析,共18页。
2022届陕西省西安市西安交通大附属中学中考数学模拟试题含解析: 这是一份2022届陕西省西安市西安交通大附属中学中考数学模拟试题含解析,共19页。试卷主要包含了如图,已知,,则的度数为,下列叙述,错误的是等内容,欢迎下载使用。
2021-2022学年北京清华大附属中学中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年北京清华大附属中学中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了计算2a2+3a2的结果是等内容,欢迎下载使用。