2022年上海新云台中学中考猜题数学试卷含解析
展开这是一份2022年上海新云台中学中考猜题数学试卷含解析,共24页。试卷主要包含了已知,则的值是,如图,将△ABC绕点C,用一根长为a等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A. B. C. D.
2.关于x的不等式的解集为x>3,那么a的取值范围为( )
A.a>3 B.a<3 C.a≥3 D.a≤3
3.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
4.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
5.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A. B. C. D.
6.已知,则的值是
A.60 B.64 C.66 D.72
7.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )
A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)
8.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A.1m B.m C.3m D.m
9.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
10.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于一元二次方程,根的判别式中的表示的数是__________.
12.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
13.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.
14.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
15.分解因式:x2y﹣6xy+9y=_____.
16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
三、解答题(共8题,共72分)
17.(8分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
(1)求证:△ACB∽△BED;
(2)当AD⊥AC时,求 的值;
(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.
18.(8分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?
19.(8分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
20.(8分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m.
(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)
21.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
22.(10分)综合与实践﹣猜想、证明与拓广
问题情境:
数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
猜想证明
(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;
(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
请你参考同学们的思路,完成证明;
(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
联系拓广:
(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).
23.(12分)阅读下列材料:
数学课上老师布置一道作图题:
已知:直线l和l外一点P.
求作:过点P的直线m,使得m∥l.
小东的作法如下:
作法:如图2,
(1)在直线l上任取点A,连接PA;
(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;
(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;
(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.
老师说:“小东的作法是正确的.”
请回答:小东的作图依据是________.
24.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
2、D
【解析】
分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
详解:解不等式2(x-1)>4,得:x>3,
解不等式a-x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选D.
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
3、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
4、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
5、A
【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【详解】
∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<,
故选A.
【点睛】
本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
6、A
【解析】
将代入原式,计算可得.
【详解】
解:当时,
原式
,
故选A.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
7、D
【解析】
设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.
【详解】
根据题意,点A、A′关于点C对称,
设点A的坐标是(x,y),
则 =0, =-1,
解得x=-a,y=-b-2,
∴点A的坐标是(-a,-b-2).
故选D.
【点睛】
本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键
8、B
【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
【详解】
由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
∵AG⊥EH,CH⊥EH,
∴∠AGE=∠CHE=90°,
∵∠AEG=∠CEH,
∴△AEG∽△CEH,
∴ == ,即 =,
解得:GH=,
则BD=GH=m,
故选:B.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
9、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
10、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
12、>
【解析】
根据反比例函数的性质求解.
【详解】
反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,
而a<b<0,
所以y1>y2
故答案为:>
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
13、
【解析】
分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.
详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,
故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).
故答案为:16π.
点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
14、16
【解析】
根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.
【详解】
解:设D(a,b)则A(a,0),B(a,2b)
∵S△BDE:S△OCE=1:9
∴BD:OC=1:3
∴C(0,3b)
∴△COE高是OA的,
∴S△OCE=3ba× =9
解得ab=8
k=a×2b=2ab=2×8=16
故答案为16.
【点睛】
此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.
15、y(x﹣3)2
【解析】
本题考查因式分解.
解答:.
16、
【解析】
过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【详解】
如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案为.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
三、解答题(共8题,共72分)
17、(1)详见解析;(2) ;(3).
【解析】
(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
(3)想办法证明AB垂直平分CF即可解决问题.
【详解】
(1)证明:如图1中,
∵DE⊥CB,
∴∠ACB=∠E=90°,
∵BD是切线,
∴AB⊥BD,
∴∠ABD=90°,
∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
∴∠ABC=∠BDE,
∴△ACB∽△BED;
(2)解:如图2中,
∵△ACB∽△BED;四边形ACED是矩形,
∴BE:DE:BC=1:2:4,
∵DF∥BC,
∴△GCB∽△GDF,
∴=;
(3)解:如图3中,
∵tan∠ABC==,AC=2,
∴BC=4,BE=4,DE=8,AB=2,BD=4,
易证△DBE≌△DBF,可得BF=4=BC,
∴AC=AF=2,
∴CF⊥AB,设CF交AB于H,
则CF=2CH=2×.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
18、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.
【解析】
(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
【详解】
解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,
依题意,得:,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x+20=1.
答:文学书的单价为40元/本,科普书的单价为1元/本.
(2)设购进m本科普书,
依题意,得:40×1+1m≤5000,
解得:m≤.
∵m为整数,
∴m的最大值为2.
答:购进1本文学书后最多还能购进2本科普书.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
19、(1)详见解析;(2)详见解析;(3)2.
【解析】
(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.
(2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG
的长,从而得到⊙O的半径r.
20、(1)11.4;(2)19.5m.
【解析】
(1)根据直角三角形的性质和三角函数解答即可;
(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
【详解】
解:(1)在Rt△ABC中,
∵∠BAC=64°,AC=5m,
∴AB=5÷0.44 11.4 (m);
故答案为:11.4;
(2)过点D作DH⊥地面于H,交水平线于点E,
在Rt△ADE中,
∵AD=20m,∠DAE=64°,EH=1.5m,
∴DE=sin64°×AD≈20×0.9≈18(m),
即DH=DE+EH=18+1.5=19.5(m),
答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
【点睛】
本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
21、(1),;(2)点的坐标为;(3)点的坐标为和
【解析】
(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
【详解】
解:(1)轴,,抛物线对称轴为直线
点的坐标为
解得或(舍去),
(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
直线经过点利用待定系数法可得直线的表达式为.
因为点在上,即点的坐标为
(3)存在点满足题意.设点坐标为,则
作垂足为
①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
综上所述:满足题意得点的坐标为和
考点:二次函数的综合运用.
22、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
【解析】
(1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
(2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
(3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
(4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
【详解】
解:(1)GF=GD,GF⊥GD,
理由:∵四边形ABCD是正方形,
∴∠ABD=∠ADB=45°,∠BAD=90°,
∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
∴∠DBF=90°,
∴GF⊥GD,
∵∠BAD=∠BAF=90°,
∴点F,A,D在同一条线上,
∵∠F=∠ADB,
∴GF=GD,
故答案为GF=GD,GF⊥GD;
(2)连接AF,∵点D关于直线AE的对称点为点F,
∴直线AE是线段DF的垂直平分线,
∴AF=AD,GF=GD,
∴∠1=∠2,∠3=∠FDG,
∴∠1+∠3=∠2+∠FDG,
∴∠AFG=∠ADG,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
设∠BAF=n,
∴∠FAD=90°+n,
∵AF=AD=AB,
∴∠FAD=∠ABF,
∴∠AFB+∠ABF=180°﹣n,
∴∠AFB+∠ADG=180°﹣n,
∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
∴GF⊥DG,
(3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
∵四边形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
∴∠FDG=∠BDC,
∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
∴∠FDB=∠GDC,
在Rt△BDC中,sin∠DFG==sin45°=,
在Rt△BDC中,sin∠DBC==sin45°=,
∴,
∴,
∴△BDF∽△CDG,
∵∠FDB=∠GDC,
∴∠DGC=∠DFG=45°,
∴∠DGC=∠FDG,
∴CG∥DF;
(4)90°﹣,理由:如图3,连接AF,BD,
∵点D与点F关于AE对称,
∴AE是线段DF的垂直平分线,
∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
∴∠DAM=90°﹣∠2=90°﹣∠1,
∴∠DAF=2∠DAM=180°﹣2∠1,
∵四边形ABCD是菱形,
∴AB=AD,
∴∠AFB=∠ABF=∠DFG+∠1,
∵BD是菱形的对角线,
∴∠ADB=∠ABD=α,
在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
∴2∠DFG+2∠1+α﹣2∠1=180°,
∴∠DFG=90°﹣.
【点睛】
本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.
23、内错角相等,两直线平行
【解析】
根据内错角相等,两直线平行即可判断.
【详解】
∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).
故答案为:内错角相等,两直线平行.
【点睛】
本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
24、(1);(2)
【解析】
(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.
【详解】
(1);
(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:
弟弟
姐姐
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
【点睛】
本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.
相关试卷
这是一份2023届上海新云台中学中考数学模拟预测题含解析,共18页。
这是一份江苏省仪征市新集初级中学2021-2022学年中考猜题数学试卷含解析,共21页。
这是一份2022年江苏省春城中学中考猜题数学试卷含解析,共20页。试卷主要包含了如果a﹣b=5,那么代数式等内容,欢迎下载使用。