2022年资阳市重点中学中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A. B. C. D.
2.7的相反数是( )
A.7 B.-7 C. D.-
3.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是( )
A.(1,4) B.(4,3) C.(2,4) D.(4,1)
4.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
5.已知a=(+1)2,估计a的值在( )
A.3 和4之间 B.4和5之间 C.5和6之间 D.6和7之间
6.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
7.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于( )
A.8 B.4 C.12 D.16
8.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为( )
A.π B.π C.6﹣π D.2﹣π
9.化简的结果为( )
A.﹣1 B.1 C. D.
10.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:
每天加工零件数
4
5
6
7
8
人数
3
6
5
4
2
每天加工零件数的中位数和众数为( )
A.6,5 B.6,6 C.5,5 D.5,6
二、填空题(共7小题,每小题3分,满分21分)
11.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
12.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
13.数据5,6,7,4,3的方差是 .
14.不等式组的解集是____________;
15.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:
种子数量
100
200
500
1000
2000
A
出芽种子数
96
165
491
984
1965
发芽率
0.96
0.83
0.98
0.98
0.98
B
出芽种子数
96
192
486
977
1946
发芽率
0.96
0.96
0.97
0.98
0.97
下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;
②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
16.计算的结果是_____
17.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
19.(5分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
学员
培训时段
培训学时
培训总费用
小明
普通时段
20
6000元
高峰时段
5
节假日时段
15
小华
普通时段
30
5400元
高峰时段
2
节假日时段
8
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
20.(8分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.
21.(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
22.(10分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
(1)求证:AE是⊙O的切线;
(2)若AE=12,CD=10,求⊙O的半径。
23.(12分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.
24.(14分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数/分
80
85
90
95
人数/人
4
2
10
4
根据图表中的信息,解答下列问题:
(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
【详解】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;
B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;
C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;
D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.
故选C
【点睛】
考核知识点:正方体的表面展开图.
2、B
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
7的相反数是−7,
故选:B.
【点睛】
此题考查相反数,解题关键在于掌握其定义.
3、D
【解析】
先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
【详解】
由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
【点睛】
本题主要考察规律的探索,注意观察规律是解题的关键.
4、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
5、D
【解析】
首先计算平方,然后再确定的范围,进而可得4+的范围.
【详解】
解:a=×(7+1+2)=4+,
∵2<<3,
∴6<4+<7,
∴a的值在6和7之间,
故选D.
【点睛】
此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.
6、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
7、A
【解析】
∵AB的中垂线交BC于D,AC的中垂线交BC于E,
∴DA=DB,EA=EC,
则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,
故选A.
8、C
【解析】
根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
【详解】
由题意可得,
BC=CD=4,∠DCB=90°,
连接OE,则OE=BC,
∴OE∥DC,
∴∠EOB=∠DCB=90°,
∴阴影部分面积为:
=
=6-π,
故选C.
【点睛】
本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
9、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
10、A
【解析】
根据众数、中位数的定义分别进行解答即可.
【详解】
由表知数据5出现了6次,次数最多,所以众数为5;
因为共有20个数据,
所以中位数为第10、11个数据的平均数,即中位数为=6,
故选A.
【点睛】
本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
∵在0.、、、这四个实数种,有理数有0.、、这3个,
∴抽到有理数的概率为,
故答案为.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12、5
【解析】
试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).
考点:圆锥的计算
13、1
【解析】
先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
【详解】
解:∵=(5+6+7+4+3)÷5=5,
∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
故答案为:1.
考点:方差.
14、﹣9<x≤﹣1
【解析】
分别求出两个不等式的解集,再求其公共解集.
【详解】
,
解不等式①,得:x≤-1,
解不等式②,得:x>-9,
所以不等式组的解集为:-9<x≤-1,
故答案为:-9<x≤-1.
【点睛】
本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15、②③
【解析】分析:
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
详解:
(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;
(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;
(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.
故答案为:②③.
点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.
16、
【解析】
【分析】根据二次根式的运算法则进行计算即可求出答案.
【详解】
=
=,
故答案为.
【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
17、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
三、解答题(共7小题,满分69分)
18、见解析
【解析】
根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
【详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
,
∴△BAF≌△DAE(SAS),
∴∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴∠FAE=90°,
∴EA⊥AF.
19、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
②根据一次函数的性质结合自变量的取值范围即可求解.
【详解】
(1)由题意,得,
解得,
故a,b的值分别是120,180;
(2)①由题意,得y=120x+180(40-x),
化简得y=-60x+7200,
∵普通时段的培训学时不会超过其他两个时段总学时的,
∴x≤(40-x),
解得x≤,
又x≥0,
∴0≤x≤;
②∵y=-60x+7200,
k=-60<0,
∴y随x的增大而减小,
∴x取最大值时,y有最小值,
∵0≤x≤;
∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
20、(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵
【解析】
试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;
(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.
试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,
可得:,
解得:,
答:A种树苗的单价为200元,B种树苗的单价为300元.
(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,
可得:200a+300(30﹣a)≤8000,
解得:a≥10,
答:A种树苗至少需购进10棵.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用
21、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
22、(1)证明见解析;(2).
【解析】
(1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
(2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
【详解】
(1)证明:连接OA,交BC于G,
∵∠ABC=∠ADB.∠ABC=∠ADE,
∴∠ADB=∠ADE,
∴,
∴OA⊥BC,
∵四边形ABCE是平行四边形,
∴AE∥BC,
∴OA⊥AE,
∴AE是⊙O的切线;
(2)连接OC,
∵AB=AC=CE,
∴∠CAE=∠E,
∵四边形ABCE是平行四边形,
∴BC∥AE,∠ABC=∠E,
∴∠ADC=∠ABC=∠E,
∴△ACE∽△DAE,,
∵AE=12,CD=10,
∴AE2=DE•CE,
144=(10+CE)CE,
解得:CE=8或-18(舍),
∴AC=CE=8,
∴Rt△AGC中,AG==2,
设⊙O的半径为r,
由勾股定理得:r2=62+(r-2)2,
r=,
则⊙O的半径是.
【点睛】
此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
23、(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;
(2)直接利用位似图形的性质得出对应点位置,进而得出答案;
试题解析:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
考点:作图-位似变换;作图-轴对称变换
24、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
【解析】
(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
(2)根据中位数和众数的定义求解可得;
(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
【详解】
(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:
故答案为40;
(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
故答案为90、90;
(3)列表法:
∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
【点睛】
本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
北京市重点中学2023届中考数学全真模拟试题含解析: 这是一份北京市重点中学2023届中考数学全真模拟试题含解析,共19页。
2022年临沧市重点中学中考数学全真模拟试题含解析: 这是一份2022年临沧市重点中学中考数学全真模拟试题含解析,共21页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。
2022届晋城市重点中学中考数学全真模拟试题含解析: 这是一份2022届晋城市重点中学中考数学全真模拟试题含解析,共19页。