年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析

    安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析第1页
    安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析第2页
    安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析

    展开

    这是一份安徽省亳州市黉高级中学2022年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知,估计的值在等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    2.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(     )
    A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
    3.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

    A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
    C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
    4.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(  )

    A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
    5.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是(  )
    A.16 B.17 C.18 D.19
    6.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    7.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为(  )
    A.0.21×108 B.21×106 C.2.1×107 D.2.1×106
    8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
    年龄(岁)
    12
    13
    14
    15
    人数(个)
    2
    4
    6
    8
    根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
    A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15
    9.下列生态环保标志中,是中心对称图形的是(  )
    A. B. C. D.
    10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.
    12.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.

    13.如图,中,,,,,平分,与相交于点,则的长等于_____.

    14.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .

    15.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____

    16.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.

    17.已知∠=32°,则∠的余角是_____°.
    三、解答题(共7小题,满分69分)
    18.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
    (2)先化简,再求值:÷(2+),其中a= .
    19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
    20.(8分)已知:a是﹣2的相反数,b是﹣2的倒数,则
    (1)a=_____,b=_____;
    (2)求代数式a2b+ab的值.
    21.(10分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
    22.(10分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.
    (1)求一次函数与反比例函数的解析式;
    (2)记两函数图象的另一个交点为E,求△CDE的面积;
    (3)直接写出不等式kx+b≤的解集.

    23.(12分)已知△ABC内接于⊙O,AD平分∠BAC.
    (1)如图1,求证:;
    (2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
    (3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.

    24.(14分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
    “读书节“活动计划书
    书本类别
    科普类
    文学类
    进价(单位:元)
    18
    12
    备注
    (1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;

    (1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    2、A
    【解析】
    分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
    详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
    ∴4=|2a+2|,a+2≠3,
    解得:a=−3,
    故选A.
    点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
    3、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:

    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    4、D
    【解析】
    ①首先利用已知条件根据边角边可以证明△APD≌△AEB;
    ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
    ③利用全等三角形的性质和对顶角相等即可判定③说法正确;
    ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
    ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
    【详解】
    由边角边定理易知△APD≌△AEB,故①正确;
    由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
    所以∠BEP=90°,
    过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
    在△AEP中,由勾股定理得PE=,
    在△BEP中,PB= ,PE=,由勾股定理得:BE=,
    ∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
    ∴∠AEP=45°,
    ∴∠BEF=180°-45°-90°=45°,
    ∴∠EBF=45°,
    ∴EF=BF,
    在△EFB中,由勾股定理得:EF=BF=,
    故②是错误的;
    因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
    由△APD≌△AEB,
    ∴PD=BE=,
    可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
    连接BD,则S△BPD=PD×BE= ,
    所以S△ABD=S△APD+S△APB+S△BPD=2+,
    所以S正方形ABCD=2S△ABD=4+ .
    综上可知,正确的有①③⑤.

    故选D.
    【点睛】
    考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
    5、A
    【解析】
    一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
    故选A.
    【点睛】
    此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
    6、C
    【解析】
    ∵ ,
    ∴.
    即的值在6和7之间.
    故选C.
    7、D
    【解析】
    2100000=2.1×106.
    点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    8、B
    【解析】
    根据加权平均数、众数、中位数的计算方法求解即可.
    【详解】

    15出现了8次,出现的次数最多,故众数是15,
    从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.
    故选B.
    【点睛】
    本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    9、B
    【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    【考点】中心对称图形.
    10、C
    【解析】
    试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
    故选C

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
    【详解】
    ①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;
    ②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;
    故腰长为1.
    故答案为:1.
    【点睛】
    此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
    12、
    【解析】
    利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
    【详解】
    当y=0时,有x-=0,
    解得:x=1,
    ∴点B1的坐标为(1,0),
    ∵A1OB1为等边三角形,
    ∴点A1的坐标为(,).
    当y=时.有x-=,
    解得:x=,
    ∴点B2的坐标为(,),
    ∵A2A1B2为等边三角形,
    ∴点A2的坐标为(,).
    同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
    故答案为;.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
    13、3
    【解析】
    如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
    【详解】
    如图,延长CE、DE,分别交AB于G、H,
    ∵∠BAD=∠ADE=60°,
    ∴△ADH是等边三角形,
    ∴DH=AD=AH=5,∠DHA=60°,
    ∵AC=BC,CE平分∠ACB,∠ACB=90°,
    ∴AB==8,AG=AB=4,CG⊥AB,
    ∴GH=AH=AG=5-4=1,
    ∵∠DHA=60°,
    ∴∠GEH=30°,
    ∴EH=2GH=2
    ∴DE=DH-EH=5=2=3.

    故答案为:3
    【点睛】
    本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
    14、2
    【解析】
    先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.
    【详解】
    ∵1行1个数,
    2行3个数,
    3行5个数,
    4行7个数,

    19行应有2×19-1=37个数
    ∴到第19行一共有
    1+3+5+7+9+…+37=19×19=1.
    第20行第3个数的绝对值是1+3=2.
    又2是偶数,
    故第20行第3个数是2.
    15、
    【解析】
    连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.
    【详解】
    解:连接OA,OC,
    ∵∠COA=2∠CBA=90°,
    ∴在Rt△AOC中,AC=,
    ∵CD⊥AB,
    ∴在Rt△ACD中,CD=AC·sin∠CAD=,
    故答案为.

    【点睛】
    本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.
    16、75
    【解析】
    因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
    因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
    所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
    所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
    所以∠BAE=15°,所以∠AEB=90°-15°=75°.
    故答案为75.
    17、58°
    【解析】
    根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
    【详解】
    解:∠α的余角是:90°-32°=58°.
    故答案为58°.
    【点睛】
    本题考查余角,解题关键是掌握互为余角的两个角的和为90度.

    三、解答题(共7小题,满分69分)
    18、(1)5+;(2)
    【解析】
    试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
    (2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
    试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
    (2)原式==,
    当a=时,原式==.
    19、 (1);
    (2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
    (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    【解析】
    (1)根据销售额=销售量×销售价单x,列出函数关系式.
    (2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
    (3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
    【详解】
    解:(1)由题意得:,
    ∴w与x的函数关系式为:.
    (2),
    ∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
    答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
    (3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
    ∵3>28,∴x2=3不符合题意,应舍去.
    答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    20、2 ﹣
    【解析】
    试题分析:利用相反数和倒数的定义即可得出.
    先因式分解,再代入求出即可.
    试题解析:是的相反数,是的倒数,

    当时,
    点睛:只有符号不同的两个数互为相反数.
    乘积为的两个数互为倒数.
    21、25%
    【解析】
    首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
    【详解】
    设这两年中获奖人次的平均年增长率为x,
    根据题意得:48+48(1+x)+48(1+x)2=183,
    解得:x1==25%,x2=﹣(不符合题意,舍去).
    答:这两年中获奖人次的年平均年增长率为25%
    22、(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;
    【解析】
    (1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.
    (2)联立方程组求解出交点坐标即可.
    (3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.
    【详解】
    (1)由已知,OA=6,OB=1,OD=4,
    ∵CD⊥x轴,
    ∴OB∥CD,
    ∴△ABO∽△ACD,
    ∴,
    ∴,
    ∴CD=20,
    ∴点C坐标为(﹣4,20),
    ∴n=xy=﹣80.
    ∴反比例函数解析式为:y=﹣,
    把点A(6,0),B(0,1)代入y=kx+b得:,
    解得:.
    ∴一次函数解析式为:y=﹣2x+1,
    (2)当﹣=﹣2x+1时,解得,
    x1=10,x2=﹣4,
    当x=10时,y=﹣8,
    ∴点E坐标为(10,﹣8),
    ∴S△CDE=S△CDA+S△EDA=.
    (3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,
    ∴由图象得,x≥10,或﹣4≤x<0.
    【点睛】
    本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.
    23、(1)证明见解析;(1)证明见解析;(3)1.
    【解析】
    (1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
    (1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
    (3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
    【详解】
    (1)如图1,连接OB、OC、OD,

    ∵∠BAD和∠BOD是所对的圆周角和圆心角,
    ∠CAD和∠COD是所对的圆周角和圆心角,
    ∴∠BOD=1∠BAD,∠COD=1∠CAD,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠BOD=∠COD,
    ∴=;
    (1)如图1,过点O作OM⊥AD于点M,

    ∴∠OMA=90°,AM=DM,
    ∵BE⊥AD于点E,CF⊥AD于点F,
    ∴∠CFM=90°,∠MEB=90°,
    ∴∠OMA=∠MEB,∠CFM=∠OMA,
    ∴OM∥BE,OM∥CF,
    ∴BE∥OM∥CF,
    ∴,
    ∵OB=OC,
    ∴=1,
    ∴FM=EM,
    ∴AM﹣FM=DM﹣EM,
    ∴DE=AF;
    (3)延长EO交AB于点H,连接CG,连接OA.

    ∵BC为⊙O直径,
    ∴∠BAC=90°,∠G=90°,
    ∴∠G=∠CFE=∠FEG=90°,
    ∴四边形CFEG是矩形,
    ∴EG=CF,
    ∵AD平分∠BAC,
    ∴∠BAF=∠CAF=×90°=45°,
    ∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
    ∠ACF=180°﹣∠CAF﹣∠AFC=45°,
    ∴∠BAF=∠ABE,∠ACF=∠CAF,
    ∴AE=BE,AF=CF,
    在Rt△ACF中,∠AFC=90°,
    ∴sin∠CAF=,即sin45°=,
    ∴CF=1×=,
    ∴EG=,
    ∴EF=1EG=1,
    ∴AE=3,
    在Rt△AEB中,∠AEB=90°,
    ∴AB==6,
    ∵AE=BE,OA=OB,
    ∴EH垂直平分AB,
    ∴BH=EH=3,
    ∵∠OHB=∠BAC,∠ABC=∠ABC
    ∴△HBO∽△ABC,
    ∴,
    ∴OH=1,
    ∴OE=EH﹣OH=3﹣1=1.
    【点睛】
    本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
    24、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
    【解析】
    (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
    (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
    【详解】
    解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
    根据题意可得,
    化简得:540-10x=360,
    解得:x=18,
    经检验:x=18是原分式方程的解,且符合题意,
    则A类图书的标价为:1.5x=1.5×18=27(元),
    答:A类图书的标价为27元,B类图书的标价为18元;
    (2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
    由题意得,,
    解得:600≤t≤800,
    则总利润w=(27-a-18)t+(18-12)(1000-t)
    =(9-a)t+6(1000-t)
    =6000+(3-a)t,
    故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
    当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
    当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
    答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.

    相关试卷

    安徽省无为市市级名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份安徽省无为市市级名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了计算3–,二次函数y=ax2+bx+c,已知电流I等内容,欢迎下载使用。

    安徽省毫州利辛县联考2022年毕业升学考试模拟卷数学卷含解析:

    这是一份安徽省毫州利辛县联考2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,估算的运算结果应在,如图所示,有一条线段是.等内容,欢迎下载使用。

    2022年广东省深圳高级中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022年广东省深圳高级中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了对于点A,等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map