|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析01
    安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析02
    安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析

    展开
    这是一份安徽省合肥市滨湖区重点中学2022年中考适应性考试数学试题含解析,共21页。试卷主要包含了估计﹣1的值在,下列事件中必然发生的事件是,下列方程中,没有实数根的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )

    A.70° B.50° C.40° D.35°
    2.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    3.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )

    A. B. C. D.
    4.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是(  )

    A.a+b<0 B.a>|﹣2| C.b>π D.
    5.估计﹣1的值在(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    6.下列事件中必然发生的事件是(  )
    A.一个图形平移后所得的图形与原来的图形不全等
    B.不等式的两边同时乘以一个数,结果仍是不等式
    C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
    D.随意翻到一本书的某页,这页的页码一定是偶数
    7.x=1是关于x的方程2x﹣a=0的解,则a的值是(  )
    A.﹣2 B.2 C.﹣1 D.1
    8.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    9.下列方程中,没有实数根的是( )
    A. B.
    C. D.
    10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )

    A.①②都对 B.①②都错 C.①对②错 D.①错②对
    二、填空题(共7小题,每小题3分,满分21分)
    11.同时掷两粒骰子,都是六点向上的概率是_____.
    12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
    13.计算:______.
    14.将多项式因式分解的结果是 .
    15.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.
    16.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)

    17.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
    (1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;
    (2)把条形统计图补充完整;
    (3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.

    19.(5分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
    求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.
    20.(8分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

    21.(10分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
    (1)求证:FH=ED;
    (2)当AE为何值时,△AEF的面积最大?

    22.(10分)某学校“智慧方园”数学社团遇到这样一个题目:
    如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
    经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
    请回答:∠ADB=   °,AB=   .请参考以上解决思路,解决问题:
    如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.

    23.(12分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.

    24.(14分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
    (1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
    (2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
    详解:∵OE是∠BOC的平分线,∠BOC=80°,
    ∴∠COE=∠BOC=×80°=40°,
    ∵OD⊥OE
    ∴∠DOE=90°,
    ∴∠DOC=∠DOE-∠COE=90°-40°=50°,
    ∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
    故选B.
    点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
    2、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    3、B
    【解析】
    由题意可知,
    当时,;
    当时,

    当时,.∵时,;时,.∴结合函数解析式,
    可知选项B正确.
    【点睛】
    考点:1.动点问题的函数图象;2.三角形的面积.
    4、D
    【解析】
    根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
    【详解】
    a=﹣2,2<b<1.
    A.a+b<0,故A不符合题意;
    B.a<|﹣2|,故B不符合题意;
    C.b<1<π,故C不符合题意;
    D.<0,故D符合题意;
    故选D.
    【点睛】
    本题考查了实数与数轴,利用有理数的运算是解题关键.
    5、B
    【解析】
    根据,可得答案.
    【详解】
    解:∵,
    ∴,

    ∴﹣1的值在2和3之间.
    故选B.
    【点睛】
    本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
    6、C
    【解析】
    直接利用随机事件、必然事件、不可能事件分别分析得出答案.
    【详解】
    A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
    B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
    C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
    D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
    7、B
    【解析】
    试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
    故选B.
    考点:一元一次方程的解.
    8、A
    【解析】

    (1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
    (2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
    (3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    9、B
    【解析】
    分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
    【详解】
    解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
    B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
    C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
    D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
    故选:B.
    【点睛】
    本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    10、A
    【解析】
    由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.
    【详解】
    解:由已知,AB=a,AB+BC=5,
    当E在BC上时,如图,

    ∵E作EF⊥AE,
    ∴△ABE∽△ECF,
    ∴,
    ∴,
    ∴y=﹣,
    ∴当x=时,﹣,
    解得a1=3,a2=(舍去),
    ∴y=﹣,
    当y=时,=﹣,
    解得x1=,x2=,
    当E在AB上时,y=时,
    x=3﹣=,
    故①②正确,
    故选A.
    【点睛】
    本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
    【详解】
    解:都是六点向上的概率是.
    【点睛】
    本题考查了概率公式的应用.
    12、.
    【解析】
    根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
    考点:概率公式.
    13、
    【解析】
    原式=
    =.
    故答案为:.
    14、m(m+n)(m﹣n).
    【解析】
    试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).
    考点:提公因式法与公式法的综合运用.
    15、5
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.005=5×10-1,
    故答案为:5×10-1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    16、π.
    【解析】
    如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
    【详解】
    连接OE,如图,

    ∵以AD为直径的半圆O与BC相切于点E,
    ∴OD=CD=3,OE⊥BC,
    ∴四边形OECD为正方形,
    ∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=32﹣,
    ∴阴影部分的面积,
    故答案为π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
    17、1
    【解析】
    根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.
    【详解】
    ∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.
    【点睛】
    本题考查面积的求解,解题的关键是读懂题意.

    三、解答题(共7小题,满分69分)
    18、(1)50,20%,72°.
    (2)图形见解析;
    (3)选出的2人来自不同科室的概率=.
    【解析】
    试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.
    (2)先求出样本中B类人数,再画图.
    (3)画树状图并求出选出的2人来自不同科室的概率.
    试题解析:(1)调查样本人数为4÷8%=50(人),
    样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,
    B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;
    (2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)

    (3)画树状图为:

    共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,
    所以选出的2人来自不同科室的概率=.
    考点:1.条形统计图2.扇形统计图3.列表法与树状图法.
    19、(1)y=-.y=x-1.(1)x<2.
    【解析】
    分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.
    详解:(1)∵, 点A(5,2),点B(2,3),

    又∵点C在y轴负半轴,点D在第二象限,
    ∴点C的坐标为(2,-1),点D的坐标为(-1,3).
    ∵点在反比例函数y=的图象上,

    ∴反比例函数的表达式为

    将A(5,2)、B(2,-1)代入y=kx+b,
    ,解得:
    ∴一次函数的表达式为.
    (1)将代入,整理得:

    ∴一次函数图象与反比例函数图象无交点.
    观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,
    ∴不等式>kx+b的解集为x<2.
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    20、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
    【解析】
    分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
    (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
    详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
    ∴抛物线的顶点坐标为(m,2m﹣2),
    故答案为(m,2m﹣2);
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,

    ∵AB∥x轴,且AB=1,
    ∴点B的坐标为(m+2,1a+2m﹣2),
    ∵∠ABC=132°,
    ∴设BD=t,则CD=t,
    ∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
    ∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
    ∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
    整理,得:at2+(1a+1)t=0,
    解得:t1=0(舍去),t2=﹣,
    ∴S△ABC=AB•CD=﹣;
    (3)∵△ABC的面积为2,
    ∴﹣=2,
    解得:a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
    分三种情况考虑:
    ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣11m+39=0,
    解得:m1=7﹣(舍去),m2=7+(舍去);
    ②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
    ③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣20m+60=0,
    解得:m3=10﹣2(舍去),m1=10+2.
    综上所述:m的值为或10+2.
    点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
    21、(1)证明见解析;(2)AE=2时,△AEF的面积最大.
    【解析】
    (1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
    (2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
    【详解】
    (1)证明:∵四边形CEFG是正方形,∴CE=EF.
    ∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
    ∴∠FEH=∠DCE.
    在△FEH和△ECD中,
    ,
    ∴△FEH≌△ECD,
    ∴FH=ED.
    (2)解:设AE=a,则ED=FH=4-a,
    ∴S△AEF=AE·FH=a(4-a)=- (a-2)2+2,
    ∴当AE=2时,△AEF的面积最大.
    【点睛】
    本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.
    22、(1)75;4;(2)CD=4.
    【解析】
    (1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
    (2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
    【详解】
    解:(1)∵BD∥AC,
    ∴∠ADB=∠OAC=75°.
    ∵∠BOD=∠COA,
    ∴△BOD∽△COA,
    ∴.
    又∵AO=3,
    ∴OD=AO=,
    ∴AD=AO+OD=4.
    ∵∠BAD=30°,∠ADB=75°,
    ∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
    ∴AB=AD=4.
    (2)过点B作BE∥AD交AC于点E,如图所示.

    ∵AC⊥AD,BE∥AD,
    ∴∠DAC=∠BEA=90°.
    ∵∠AOD=∠EOB,
    ∴△AOD∽△EOB,
    ∴.
    ∵BO:OD=1:3,
    ∴.
    ∵AO=3,
    ∴EO=,
    ∴AE=4.
    ∵∠ABC=∠ACB=75°,
    ∴∠BAC=30°,AB=AC,
    ∴AB=2BE.
    在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
    解得:BE=4,
    ∴AB=AC=8,AD=1.
    在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
    解得:CD=4.
    【点睛】
    本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
    23、(1)证明见解析;(2)AB、AD的长分别为2和1.
    【解析】
    (1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.
    【详解】
    (1)证明:∵AB⊥OM于B,DE⊥ON于E,
    ∴.
    在Rt△ABO与Rt△DEA中,
    ∵∴Rt△ABO≌Rt△DEA(HL).
    ∴∠AOB=∠DAE.∴AD∥BC.
    又∵AB⊥OM,DC⊥OM,∴AB∥DC.
    ∴四边形ABCD是平行四边形.
    ∵,∴四边形ABCD是矩形;
    (2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.
    设AD=x,则OA=x,AE=OE-OA=9-x.
    在Rt△DEA中,由得:
    ,解得.
    ∴AD=1.即AB、AD的长分别为2和1.
    【点睛】
    矩形的判定和性质;掌握判断定证三角形全等是关键.
    24、(1)见解析;(2)
    【解析】
    (1)根据题意作出图形即可;
    (2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
    【详解】
    (1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
    则直线PQ即为所求;

    (2)由(1)知,PD=PD′,
    ∵PD′⊥PD,
    ∴∠DPD′=90°,
    ∵∠A=90°,
    ∴∠ADP+∠APD=∠APD+∠BPD′=90°,
    ∴∠ADP=∠BPD′,
    在△ADP与△BPD′中,,
    ∴△ADP≌△BPD′,
    ∴AD=PB=4,AP= BD′
    ∵PB=AB﹣AP=6﹣AP=4,
    ∴AP=2;
    ∴PD==2,BD′=2
    ∴CD′=BC- BD′=4-2=2
    ∵PD=PD′,PD⊥PD′,
    ∵DD′=PD=2,
    ∵PQ垂直平分DD′,连接Q D′
    则DQ= D′Q
    ∴∠QD′D=∠QDD′
    ∴sin∠QD′D=sin∠QDD′=.

    【点睛】
    本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.

    相关试卷

    安徽省合肥市滨湖区重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份安徽省合肥市滨湖区重点中学2021-2022学年十校联考最后数学试题含解析,共23页。试卷主要包含了对于下列调查,图为小明和小红两人的解题过程,的相反数是,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。

    安徽省合肥市滨湖区2021-2022学年中考联考数学试题含解析: 这是一份安徽省合肥市滨湖区2021-2022学年中考联考数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2022年安徽省六安市重点中学中考适应性考试数学试题含解析: 这是一份2022年安徽省六安市重点中学中考适应性考试数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,实数 的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map