安徽省阜阳市城南中学2021-2022学年中考联考数学试卷含解析
展开
这是一份安徽省阜阳市城南中学2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列计算,正确的是,某一公司共有51名员工等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
2.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
3.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
A. B. C. D.
4.下列计算,正确的是( )
A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
5.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变 B.平均数增加,中位数不变
C.平均数不变,中位数增加 D.平均数和中位数都增大
6.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
7.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
求证:∽.
证明:又,,,,∽.
A. B. C. D.
8.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A. B. C. D.
9.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
10.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B. C. D.
11.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
12.下列运算正确的是( )
A.a3•a2=a6 B.(a2)3=a5 C. =3 D.2+=2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
14.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.
15.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.
16.与是位似图形,且对应面积比为4:9,则与的位似比为______.
17.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
18.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
20.(6分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
(1)收回问卷最多的一天共收到问卷_________份;
(2)本次活动共收回问卷共_________份;
(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?
21.(6分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
22.(8分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
23.(8分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.
(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
24.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
25.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
26.(12分)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
27.(12分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
2、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、C
【解析】
A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
故选C.
4、C
【解析】
解:A.故错误;
B. 故错误;
C.正确;
D.
故选C.
【点睛】
本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
5、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
6、B
【解析】
试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1.
故选B
考点:由实际问题抽象出一元二次方程.
7、B
【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;
【详解】
证明:,
,
又,
,
∽.
故选B.
【点睛】
本题考查了相似三角形的判定与性质;关键是证明三角形相似.
8、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
9、A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小的数.
10、B
【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
∵,
∴,
∴BH=,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF== .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
11、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
12、C
【解析】
结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.
【详解】
解:A. a3×a2=a5,原式计算错误,故本选项错误;
B. (a2)3=a6,原式计算错误,故本选项错误;
C. =3,原式计算正确,故本选项正确;
D. 2和不是同类项,不能合并,故本选项错误.
故选C.
【点睛】
本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
14、220.
【解析】
试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°
考点:内角和定理
点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键
15、1
【解析】
题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
【详解】
①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;
②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;
故腰长为1.
故答案为:1.
【点睛】
此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
16、2:1
【解析】
由相似三角形的面积比等于相似比的平方,即可求得与的位似比.
【详解】
解与是位似图形,且对应面积比为4:9,
与的相似比为2:1,
故答案为:2:1.
【点睛】
本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.
17、.
【解析】
根据判别式的意义得到,然后解不等式即可.
【详解】
解:关于的一元二次方程有两个不相等的实数根,
,
解得:,
故答案为:.
【点睛】
此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
18、1
【解析】
试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
解:∵侧面积为15πcm2,
∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
解得:l=5,
∴扇形面积为15π=,
解得:n=1,
∴侧面展开图的圆心角是1度.
故答案为1.
考点:圆锥的计算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a
相关试卷
这是一份安徽省合肥市庐阳中学2021-2022学年中考联考数学试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,二元一次方程组的解为,下列方程有实数根的是,2016的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年安徽省六安市实验中学中考联考数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,某反比例函数的图象经过点等内容,欢迎下载使用。
这是一份2021-2022学年安徽省阜阳市重点中学中考联考数学试卷含解析,共22页。试卷主要包含了的值是,计算﹣8+3的结果是,计算-5x2-3x2的结果是等内容,欢迎下载使用。