安徽省砀山县重点名校2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
2.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
3.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
4.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A. B. C. D.
5.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B. C. D.
6.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
A. B.
C. D.
7.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
8.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )
A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
9.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
10.﹣2018的相反数是( )
A.﹣2018 B.2018 C.±2018 D.﹣
11.一个几何体的三视图如图所示,该几何体是
A.直三棱柱 B.长方体 C.圆锥 D.立方体
12.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10
C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.
14.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.
16..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.
17.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率m/n
0.58
0.64
0.58
0.59
0.605
0.601
18.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
20.(6分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
21.(6分)如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
22.(8分)计算:(﹣1)4﹣2tan60°+ .
23.(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
(1)求两批次购蔬菜各购进多少吨?
(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
24.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
25.(10分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.
26.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
27.(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:a= %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
2、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
3、D
【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【详解】
∵0.45<0.51<0.62,
∴丁成绩最稳定,
故选D.
【点睛】
此题主要考查了方差,关键是掌握方差越小,稳定性越大.
4、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
5、B
【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
∵,
∴,
∴BH=,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF== .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
6、B
【解析】
抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.
【点睛】
本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
7、C
【解析】
分析:
由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
详解:
∵在中,﹣6<0,
∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
∵当x=﹣3时,y=2,当x=﹣2时,y=3,
∴当﹣3<x<﹣2时,2<y<3,
故选C.
点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
8、C
【解析】
分析:结合2个图象分析即可.
详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
C.分析图2可知甲车从G口出,乙车从F口出,故错误.
D.立交桥总长为:故正确.
故选C.
点睛:考查图象问题,观察图象,读懂图象是解题的关键.
9、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、B
【解析】
分析:只有符号不同的两个数叫做互为相反数.
详解:-1的相反数是1.
故选:B.
点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
11、A
【解析】
根据三视图的形状可判断几何体的形状.
【详解】
观察三视图可知,该几何体是直三棱柱.
故选A.
本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.
12、D
【解析】
首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
①当三边为3、4、1时,其周长为3+4+1=13;
②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
综上所述,三角形周长最小为11,最大为11,
故选:D.
【点睛】
本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、AC=BC.
【解析】
分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
详解:添加AC=BC,
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠EBC=∠DAC,
在△ADC和△BEC中
,
∴△ADC≌△BEC(AAS),
故答案为:AC=BC.
点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
14、1
【解析】
∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
∴△AEB≌△AFD,
∴S△AEB=S△AFD,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=1.
15、.
【解析】
试题解析:如图,连接OM交AB于点C,连接OA、OB,
由题意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cos∠AOC=,AC=
∴∠AOC=60°,AB=2AC=2,
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB
=
=,
S阴影=S半圆-2S弓形ABM
=π×22-2()
=2.
故答案为2.
16、4
【解析】
先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论.
【详解】
设圆锥底面圆的半径为 r,
∵AC=6,∠ACB=120°,
∴=2πr,
∴r=2,即:OA=2,
在 Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,
故答案为4.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键.
17、0.1
【解析】
根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
【详解】
解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
则P白球=0.1.
故答案为0.1.
【点睛】
本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
18、1.
【解析】
连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
【详解】
连接BD,如图,
∵AD为△ABC的外接圆⊙O的直径,
∴∠ABD=90°,
∴∠D=90°﹣∠BAD=90°﹣50°=1°,
∴∠ACB=∠D=1°.
故答案为1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).
【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解
析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标.
【详解】
解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1,
经检验,m=1是原方程的解,
故m的值是1;
(2)设BD与x轴交于点E,
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=,
∵三角形PBD的面积是8,
∴BD•PE=8,
∴••PE=8,
∴PE=4m,
∵E(2m,1),点P在x轴上,
∴点P坐标为(﹣2m,1)或(6m,1).
【点睛】
本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.
20、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
21、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
【解析】
分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
详解: (1)已知抛物线经过,,
∴,解得,
∴所求抛物线的解析式为.
(2)∵,,∴,,
可得旋转后点的坐标为.
当时,由得,
可知抛物线过点.
∴将原抛物线沿轴向下平移1个单位长度后过点.
∴平移后的抛物线解析式为:.
(3)∵点在上,可设点坐标为,
将配方得,∴其对称轴为.由题得B1(0,1).
①当时,如图①,
∵,
∴,
∴,
此时,
∴点的坐标为.
②当时,如图②,
同理可得,
∴,
此时,
∴点的坐标为.
综上,点的坐标为或.
点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
22、1
【解析】
首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.
解:原式==1.
“点睛”此题主要考查了实数运算,正确化简各数是解题关键.
,
23、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
【详解】
(1)设第一次购进a吨,第二次购进b吨,
,
解得 ,
答:第一次购进40吨,第二次购进160吨;
(2)设精加工x吨,利润为w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴当x=150时,w取得最大值,此时w=1,
答:为获得最大利润,精加工数量应为150吨,最大利润是1.
【点睛】
本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
24、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).
【解析】
分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.
(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.
②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.
③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.
详解:
(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴D(1,﹣4a).
(2)①∵以AD为直径的圆经过点C,
∴△ACD为直角三角形,且∠ACD=90°;
由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:
AC2=9a2+9、CD2=a2+1、AD2=16a2+4
由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
化简,得:a2=1,由a<0,得:a=﹣1,
②∵a=﹣1,
∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).
∵将△OBE绕平面内某一点旋转180°得到△PMN,
∴PM∥x轴,且PM=OB=1;
设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
∵BF=2MF,
∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0
解得:x1=﹣1(舍去)、x2=.
∴M(,)、N(,).
③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:
∵C(0,3)、D(1,4),
∴CH=DH=1,即△CHD是等腰直角三角形,
∴△QGD也是等腰直角三角形,即:QD2=2QG2;
设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;
得:(4﹣b)2=2(b2+4),
化简,得:b2+8b﹣8=0,解得:b=﹣4±2;
即点Q的坐标为(1,)或(1,).
点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.
25、 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.
【解析】
(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;
(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.
【详解】
解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.
依题意得:,
解得:x=1.
检验x=1是原分式方程的解.
(2)由题意得=20-15=5(天)
∴现在比原计划提前5天完成.
【点睛】
此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
26、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【解析】
(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
【详解】
(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得
,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得
,
解得:,
因为a是整数,
所以a=6,7,8;
则(10﹣a)=4,3,2;
三种方案:
①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
27、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
(2)根据众数和中位数的定义即可求出答案;
(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
【详解】
解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
该扇形所对圆心角的度数为310°×10%=31°,
参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:
故答案为10;
(2)抽样调查中总人数为100人,
结合条形统计图可得:众数是5,中位数是1.
(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
活动时间不少于1天的学生人数大约有5400人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
江苏省金坛区重点名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省金坛区重点名校2021-2022学年中考数学模拟精编试卷含解析,共19页。
邗江实验重点名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份邗江实验重点名校2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列计算结果是x5的为,下列计算结果为a6的是等内容,欢迎下载使用。
广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。