|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析01
    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析02
    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析

    展开
    这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )

    A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
    2.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
    A.1 B. C. D.
    3.下列四个几何体,正视图与其它三个不同的几何体是(  )
    A. B.
    C. D.
    4.下列图形中为正方体的平面展开图的是(  )
    A. B.
    C. D.
    5.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )

    A.125° B.75° C.65° D.55°
    6.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    7.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
    AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
    DG=DE在以上4个结论中,正确的共有( )个

    A.1个 B.2 个 C.3 个 D.4个
    8.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是(  )
    A.﹣ B. C. D.
    9.估计﹣1的值在(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    10.下列各数中,比﹣1大1的是(  )
    A.0 B.1 C.2 D.﹣3
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.

    12.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______

    13.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
    14.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
    15.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
    16.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
    17.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.

    19.(5分)解不等式组并在数轴上表示解集.
    20.(8分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?

    21.(10分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.

    请你根据图中信息,回答下列问题:
    (1)求本次调查的学生人数,并补全条形统计图;
    (2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
    (3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
    22.(10分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.
    (1)求一次函数与反比例函数的解析式;
    (2)记两函数图象的另一个交点为E,求△CDE的面积;
    (3)直接写出不等式kx+b≤的解集.

    23.(12分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
    生产甲产品件数(件)
    生产乙产品件数(件)
    所用总时间(分钟)
    10
    10
    350
    30
    20
    850
    (1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
    (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
    ①用含a的代数式表示小王四月份生产乙种产品的件数;
    ②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
    24.(14分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
    求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
    【详解】
    解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
    根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
    故侧面积=πrl=π×6×4=14πcm1.
    故选:A.
    【点睛】
    此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    2、B
    【解析】
    直接利用概率的意义分析得出答案.
    【详解】
    解:因为一枚质地均匀的硬币只有正反两面,
    所以不管抛多少次,硬币正面朝上的概率都是,
    故选B.
    【点睛】
    此题主要考查了概率的意义,明确概率的意义是解答的关键.
    3、C
    【解析】
    根据几何体的三视图画法先画出物体的正视图再解答.
    【详解】
    解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
    而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
    故选:C.
    【点睛】
    此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
    4、C
    【解析】
    利用正方体及其表面展开图的特点依次判断解题.
    【详解】
    由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
    【点睛】
    本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
    5、D
    【解析】
    延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
    【详解】
    延长CB,延长CB,
    ∵AD∥CB,
    ∴∠1=∠ADE=145,
    ∴∠DBC=180−∠1=180−125=55.
    故答案选:D.
    【点睛】
    本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
    6、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    7、C
    【解析】
    【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
    【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
    ∴∠DFG=∠A=90°,
    ∴△ADG≌△FDG,①正确;
    ∵正方形边长是12,
    ∴BE=EC=EF=6,
    设AG=FG=x,则EG=x+6,BG=12﹣x,
    由勾股定理得:EG2=BE2+BG2,
    即:(x+6)2=62+(12﹣x)2,
    解得:x=4
    ∴AG=GF=4,BG=8,BG=2AG,②正确;
    ∵△ADG≌△FDG,△DCE≌△DFE,
    ∴∠ADG=∠FDG,∠FDE=∠CDE
    ∴∠GDE==45〫.③正确;
    BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
    ∴正确说法是①②③
    故选:C
    【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
    8、C
    【解析】
    根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.
    【详解】
    按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,
    可得第n个数为,
    ∴当时,这个数为,
    故选:C.
    【点睛】
    本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.
    9、B
    【解析】
    根据,可得答案.
    【详解】
    解:∵,
    ∴,

    ∴﹣1的值在2和3之间.
    故选B.
    【点睛】
    本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
    10、A
    【解析】
    用-1加上1,求出比-1大1的是多少即可.
    【详解】
    ∵-1+1=1,
    ∴比-1大1的是1.
    故选:A.
    【点睛】
    本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.4
    【解析】
    由概率估计图案在整副画中所占比例,再求出图案的面积.
    【详解】
    估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.
    故答案为1.4
    【点睛】
    本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
    12、1
    【解析】
    根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
    【详解】
    ∵DE∥BC,
    ∴.
    ∵,CE=11,
    ∴,解得AE=1.
    故答案为1.
    【点睛】
    本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
    13、
    【解析】
    分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
    详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
    (﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
    (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
    (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
    (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
    (3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
    点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
    14、 
    【解析】
    试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.
    考点:相似三角形的性质.
    15、2
    【解析】
    把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
    【详解】
    ∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
    ∴1= -4+2(m-1)+3,解得m=2,故答案为2.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
    16、
    【解析】
    列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
    【详解】
    列表如下:

    -2
    -1
    1
    2
    -2

    2
    -2
    -4
    -1
    2

    -1
    -2
    1
    -2
    -1

    2
    2
    -4
    -2
    2

    由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
    ∴积为大于-4小于2的概率为=,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    17、﹣2
    【解析】
    连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.
    【详解】
    连结AE,如图1,

    ∵∠BAC=90°,AB=AC,BC=,
    ∴AB=AC=4,
    ∵AD为直径,
    ∴∠AED=90°,
    ∴∠AEB=90°,
    ∴点E在以AB为直径的O上,
    ∵O的半径为2,
    ∴当点O、E. C共线时,CE最小,如图2

    在Rt△AOC中,∵OA=2,AC=4,
    ∴OC=,
    ∴CE=OC−OE=2﹣2,
    即线段CE长度的最小值为2﹣2.
    故答案为:2﹣2.
    【点睛】
    此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.

    三、解答题(共7小题,满分69分)
    18、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    19、﹣<x≤0,不等式组的解集表示在数轴上见解析.
    【解析】
    先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解不等式2x+1>0,得:x>﹣,
    解不等式,得:x≤0,
    则不等式组的解集为﹣<x≤0,
    将不等式组的解集表示在数轴上如下:

    【点睛】
    本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.
    20、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
    【解析】
    (1)将函数解析式配方成顶点式可得最值;
    (1)画图象可得t的取值.
    【详解】
    (1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
    ∴当t=1时,h取得最大值10米;
    答:小球飞行时间是1s时,小球最高为10m;
    (1)如图,

    由题意得:15=10t﹣5t1,
    解得:t1=1,t1=3,
    由图象得:当1≤t≤3时,h≥15,
    则小球飞行时间1≤t≤3时,飞行高度不低于15m.
    【点睛】
    本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
    21、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
    【解析】
    (1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
    (2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
    (3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
    【详解】
    解:(1)14÷28%=50,
    ∴本次共调查了50名学生.
    补全条形统计图如下.

    (2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
    (3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.

    共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
    ∴抽取的2名学生恰好来自同一个班级的概率P==.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    22、(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;
    【解析】
    (1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.
    (2)联立方程组求解出交点坐标即可.
    (3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.
    【详解】
    (1)由已知,OA=6,OB=1,OD=4,
    ∵CD⊥x轴,
    ∴OB∥CD,
    ∴△ABO∽△ACD,
    ∴,
    ∴,
    ∴CD=20,
    ∴点C坐标为(﹣4,20),
    ∴n=xy=﹣80.
    ∴反比例函数解析式为:y=﹣,
    把点A(6,0),B(0,1)代入y=kx+b得:,
    解得:.
    ∴一次函数解析式为:y=﹣2x+1,
    (2)当﹣=﹣2x+1时,解得,
    x1=10,x2=﹣4,
    当x=10时,y=﹣8,
    ∴点E坐标为(10,﹣8),
    ∴S△CDE=S△CDA+S△EDA=.
    (3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,
    ∴由图象得,x≥10,或﹣4≤x<0.
    【点睛】
    本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.
    23、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
    【解析】
    (1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
    (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
    ②根据“小王四月份的工资不少于1500元”即可列出不等式.
    【详解】
    (1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:

    解这个方程组得:,
    答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
    (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
    ∴一小时生产甲产品4件,生产乙产品3件,
    所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
    ②依题意:1.5a+2.8(600-)≥1500,
    1680﹣0.6a≥1500,
    解得:a≤1.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
    24、(1)见解析,(2)CF=cm.
    【解析】
    (1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
    (2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
    【详解】
    证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
    ∴∠CDB+∠DBC=90°.
    ∵CE⊥BD,∴∠DBC+∠ECB=90°.
    ∴∠ECB=∠CDB.
    ∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
    ∴∠CFB=∠BCF
    ∴BF=BC
    (2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
    在Rt△BCD中,由勾股定理得BD=.
    又∵BD•CE=BC•DC,
    ∴CE=.
    ∴BE=.
    ∴EF=BF﹣BE=3﹣.
    ∴CF=cm.
    【点睛】
    本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.

    相关试卷

    北京首师附大兴北校区市级名校2021-2022学年中考数学全真模拟试题含解析: 这是一份北京首师附大兴北校区市级名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2022届北京丰台市级名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届北京丰台市级名校中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析: 这是一份2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,若,,则的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map