北京三帆中学2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列命题正确的是( )
A.内错角相等 B.-1是无理数
C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等
2.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
A.70° B.65° C.62° D.60°
3.3的倒数是( )
A. B. C. D.
4.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
5.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
6.在数轴上标注了四段范围,如图,则表示的点落在( )
A.段① B.段② C.段③ D.段④
7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )
A.100° B.110° C.120° D.130°
8.的绝对值是( )
A. B. C. D.
9.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
10.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是( )
A. B. C. D.
11.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为( )
A.0.25×1010 B.2.5×1010 C.2.5×109 D.25×108
12.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.
14.关于的方程有增根,则______.
15.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
16.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .
17.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).
18.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=0
20.(6分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
21.(6分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
商品名称
甲
乙
进价(元/件)
40
90
售价(元/件)
60
120
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
22.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.
23.(8分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
(1)求抛物线的解析式;
(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.
24.(10分)今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
(1)求购进 A、B 两种树苗的单价;
(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
25.(10分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。
26.(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
(1)求此抛物线的表达式;
(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
27.(12分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】解:A.两直线平行,内错角相等,故A错误;
B.-1是有理数,故B错误;
C.1的立方根是1,故C错误;
D.两角及一边对应相等的两个三角形全等,正确.
故选D.
2、A
【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
【详解】
∵AB∥CD,∠C=35°,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=70°,
∵AB∥CD,
∴∠BED=∠ABE=70°.
故选:A.
【点睛】
本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
3、C
【解析】
根据倒数的定义可知.
解:3的倒数是.
主要考查倒数的定义,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
4、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
5、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
6、C
【解析】
试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
所以应在③段上.
故选C
考点:实数与数轴的关系
7、B
【解析】
根据同弧所对的圆周角是圆心角度数的一半即可解题.
【详解】
∵∠BOC=40°,∠AOB=180°,
∴∠BOC+∠AOB=220°,
∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),
故选B.
【点睛】
本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.
8、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
9、C
【解析】
解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
故选C.
【点睛】
本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
10、C
【解析】
分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.
详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.
点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.
11、C
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】2500000000的小数点向左移动9位得到2.5,
所以2500000000用科学记数表示为:2.5×1.
故选C.
【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.
【详解】
解:设乙车的速度是x千米/小时,则根据题意,
可列方程:.
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
14、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
15、1.06×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10600=1.06×104,
故答案为:1.06×104
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、 (-1,-2)
【解析】
试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),
故答案为(﹣1,﹣2).
考点:二次函数的性质.
17、
【解析】
根据,DE∥BC,结合平行线分线段成比例来求.
【详解】
∵,DE∥BC,
∴,
∴ = =.
∵,
∴
∴.
故答案为:.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
18、108°
【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】
首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.
【详解】
解:(﹣2)÷
=
=x2﹣3﹣2x+2
=x2﹣2x﹣1,
∵x2﹣x﹣4=0,
∴x2﹣2x=8,
∴原式=8﹣1=1.
【点睛】
分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.
20、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
21、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
【详解】
(Ⅰ)根据题意得:
则y与x的函数关系式为.
(Ⅱ),解得.
∴至少要购进20件甲商品.
,
∵,
∴y随着x的增大而减小
∴当时,有最大值,.
∴若售完这些商品,则商场可获得的最大利润是2800元.
【点睛】
本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.
22、(1);(2)
【解析】
(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.
【详解】
(1);
(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:
弟弟
姐姐
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
【点睛】
本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.
23、(1)y=﹣x2+2x+1;(2)当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【解析】
(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;
(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标.
【详解】
(1)将A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,
得:,
解得:,
∴抛物线的解析式为y=﹣x2+2x+1.
(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,
设点M的坐标为(1,m),
则CM=,AC==,AM=.
分两种情况考虑:
①当∠ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,
解得:m=,
∴点M的坐标为(1,);
②当∠CAM=90°时,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,
解得:m=﹣,
∴点M的坐标为(1,﹣).
综上所述:当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【点睛】
本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点.
24、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
【解析】
(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
解得: .
答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
(2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
200a+300(30﹣a)≤8000,
解得:a≥1.
∴A种树苗至少需购进 1 棵.
【点睛】
本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.
25、-2
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.
【详解】
原式=
=
= ,
∵x≠±1且x≠0,
∴在-1≤x≤2中符合条件的x的值为x=2,
则原式=- =-2.
【点睛】
此题考查分式的化简求值,解题关键在于掌握运算法则.
26、(1)y=-(x-3)2+5(2)5
【解析】
(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
【详解】
(1)设此抛物线的表达式为y=a(x-3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
∴此抛物线的表达式为
(2)∵A(1,3),抛物线的对称轴为直线x=3,
∴B(5,3).
令x=0,则
∴△ABC的面积
【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
27、改善后滑板会加长1.1米.
【解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.
【详解】
解:在Rt△ABC中,AC=AB•sin45°=4×=,
在Rt△ADC中,AD=2AC=,
AD-AB=-4≈1.1.
答:改善后滑板会加长1.1米.
【点睛】
本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.
北京市第四中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份北京市第四中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了的相反数是,下列运算正确的是,的一个有理化因式是,某反比例函数的图象经过点,如图所示的几何体的主视图是等内容,欢迎下载使用。
安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。
2021-2022学年泉州市泉港三川中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年泉州市泉港三川中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中,正确的是等内容,欢迎下载使用。