


2022年重庆市重点达标名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
2.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
3.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
4.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )
A. B.
C. D.
5.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
6.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
7.如图,等边△ABC内接于⊙O,已知⊙O的半径为2,则图中的阴影部分面积为( )
A. B. C. D.
8.下列方程有实数根的是( )
A. B.
C.x+2x−1=0 D.
9.下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
10.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是( )
A.75° B.65° C.60° D.50°
11.一个几何体的三视图如图所示,该几何体是
A.直三棱柱 B.长方体 C.圆锥 D.立方体
12.关于的分式方程解为,则常数的值为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.
14.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.
15.使分式的值为0,这时x=_____.
16.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.
17.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
18.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
20.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
21.(6分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
22.(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上
(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;
(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;
(3)在(1)中,求在旋转过程中△ABC扫过的面积.
23.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.
24.(10分)先化简分式: (-)÷∙,再从-3、-3、2、-2
中选一个你喜欢的数作为的值代入求值.
25.(10分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
26.(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
27.(12分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:
⑴补全条形统计图,“体育”对应扇形的圆心角是 度;
⑵根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;
⑶在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
2、D
【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
【详解】
在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴ ,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则
即
解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=
过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=
根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.
故选:D
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
3、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
4、C
【解析】
分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
D、∵sin∠ABE=,
∵∠EBD=∠EDB
∴BE=DE
∴sin∠ABE=.
由已知不能得到△ABE∽△CBD.故选C.
点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.
5、A
【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
【详解】
解:依题意,得:b=a+1,c=a+7,d=a+1.
A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,选项A符合题意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
∴a+c+2=b+d,选项B不符合题意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
∴a+b+14=c+d,选项C不符合题意;
D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
∴a+d=b+c,选项D不符合题意.
故选:A.
【点睛】
考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
6、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
7、A
【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.
∵△ABC是等边三角形,∴BH=AB=,OH=1,∴△OBC的面积= ×BC×OH=,则△OBA的面积=△OAC的面积=△OBC的面积=,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积==.故选A.
点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.
8、C
【解析】
分析:根据方程解的定义,一一判断即可解决问题;
详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;
B.∵≥0,∴=﹣1无解,故本选项不符合题意;
C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;
D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.
故选C.
点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9、B
【解析】
试题分析:A.不是中心对称图形,故此选项不合题意;
B.是中心对称图形,故此选项符合题意;
C.不是中心对称图形,故此选项不符合题意;
D.不是中心对称图形,故此选项不合题意;
故选B.
考点:中心对称图形.
10、B
【解析】
因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.
解:∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所对的圆周角相等).
故选B.
11、A
【解析】
根据三视图的形状可判断几何体的形状.
【详解】
观察三视图可知,该几何体是直三棱柱.
故选A.
本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.
12、D
【解析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
【详解】
解:把x=4代入方程,得
,
解得a=1.
经检验,a=1是原方程的解
故选D.
点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
【详解】如图,过点A作AD⊥x轴,垂足为D,
∵tan∠AOC==,∴设点A的坐标为(1a,a),
∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
∴a=1a﹣2,得a=1,
∴1=,得k=1,
故答案为:1.
【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
14、8
【解析】
试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可
解:
∵DE是BC的垂直平分线,
∴BD=CD,
∴AB=AD+BD=AD+CD,
∴△ACD的周长=AD+CD+AC=AB+AC=8cm;
故答案为8
考点:线段垂直平分线的性质
点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等
15、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
16、(3,2).
【解析】
根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
【详解】
解:如图所示:∵A(0,a),
∴点A在y轴上,
∵C,D的坐标分别是(b,m),(c,m),
∴B,E点关于y轴对称,
∵B的坐标是:(﹣3,2),
∴点E的坐标是:(3,2).
故答案为:(3,2).
【点睛】
此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.
17、3cm.
【解析】
根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
【详解】
解:∵四边形ABCD是矩形,AC=6cm
∴OA=OC=OB=OD=3cm,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=3cm,
故答案为:3cm
【点睛】
本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
18、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2400元;(2)8台.
【解析】
试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.
试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
解得
经检验,是原方程的解.
答:第一次购入的空调每台进价是2 400元.
(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
设第二次将y台空调打折出售,由题意,得
解得
答:最多可将8台空调打折出售.
20、(1);(2)原分式方程中“?”代表的数是-1.
【解析】
(1)“?”当成5,解分式方程即可,
(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
【详解】
(1)方程两边同时乘以得
解得
经检验,是原分式方程的解.
(2)设?为,
方程两边同时乘以得
由于是原分式方程的增根,
所以把代入上面的等式得
所以,原分式方程中“?”代表的数是-1.
【点睛】
本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值.
21、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
22、(1)(1)如图所示见解析;(3)4π+1.
【解析】
(1)根据旋转的性质得出对应点位置,即可画出图形;
(1)利用平移的性质得出对应点位置,进而得出图形;
(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.
【详解】
(1)如图所示,△A1BC1即为所求;
(1)如图所示,△A1B1C1即为所求;
(3)由题可得,△ABC扫过的面积==4π+1.
【点睛】
考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.
23、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).
【解析】
(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.
【详解】
(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.
24、 ;5
【解析】
原式=(-)∙
=∙
=∙
=
a=2,原式=5
25、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.
【解析】
易得M在AB的垂直平分线上,且到C的距离等于AB的一半.
26、,当x=1时,原式=﹣1.
【解析】
先化简分式,然后将x的值代入计算即可.
【详解】
解:原式=
= .
且,
∴x的整数有,
∴取,
当时,
原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
27、(1)72;(2)700;(3).
【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.
试题解析:
(1)调查的学生总数为60÷30%=200(人),
则体育类人数为200﹣(30+60+70)=40,
补全条形图如下:
“体育”对应扇形的圆心角是360°×=72°;
(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),
(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:
所以P(2名学生来自不同班)=.
考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.
广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。
2022年重庆开州区重点达标名校中考数学考前最后一卷含解析: 这是一份2022年重庆开州区重点达标名校中考数学考前最后一卷含解析,共28页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。
2022届天津市红桥区重点达标名校中考数学考前最后一卷含解析: 这是一份2022届天津市红桥区重点达标名校中考数学考前最后一卷含解析,共19页。试卷主要包含了把一副三角板如图等内容,欢迎下载使用。