|试卷下载
终身会员
搜索
    上传资料 赚现金
    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题
    立即下载
    加入资料篮
    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题01
    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题02
    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题03
    还剩49页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题

    展开
    这是一份贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题,共52页。试卷主要包含了0+2sin60°+|1﹣|﹣,阅读材料,两点,甲秀楼是贵阳市一张靓丽的名片等内容,欢迎下载使用。

    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题
    一.完全平方公式(共1小题)
    1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
    (2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
    a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣1)……第一步
    =a+a2﹣a2﹣1……第二步
    =a﹣1……第三步
    小红的解答从第    步开始出错,请写出正确的解答过程.
    二.整式的混合运算—化简求值(共1小题)
    2.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.
    (2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.
    三.一元一次不等式的应用(共1小题)
    3.(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.
    (1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?
    (2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?
    四.一次函数的应用(共2小题)
    4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1


    制作一件产品所获利润(元)
    20
    3
    10
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
    5.(2020•安顺)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:

    (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
    (2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
    五.反比例函数与一次函数的交点问题(共3小题)
    6.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于C,P(﹣8,﹣2)两点.
    (1)求该反比例函数的解析式及m的值;
    (2)判断点B是否在该反比例函数的图象上,并说明理由.

    7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
    (1)求点A的坐标及m的值;
    (2)若AB=2,求一次函数的表达式.

    8.(2020•安顺)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
    (1)求反比例函数的表达式;
    (2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
    (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.

    六.二次函数的应用(共2小题)
    9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
    (1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
    (2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点O.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
    (3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.

    10.(2020•安顺)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
    时间x(分钟)
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    9~15
    人数y(人)
    0
    170
    320
    450
    560
    650
    720
    770
    800
    810
    810
    (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
    (2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
    (3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
    七.二次函数综合题(共1小题)
    11.(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.
    (1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;
    (2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).
    ①求a,c的值;
    ②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.
    八.全等三角形的判定与性质(共1小题)
    12.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.
    (1)求证:△ABD≌△ACE;
    (2)若∠BAD=22.5°时,求BD的长.

    九.矩形的性质(共1小题)
    13.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
    (1)求证:△ABN≌△MAD;
    (2)若AD=2,AN=4,求四边形BCMN的面积.

    一十.四边形综合题(共3小题)
    14.(2022•安顺)如图1,在矩形ABCD中,AB=10,AD=8,E是AD边上的一点,连接CE,将矩形ABCD沿CE折叠,顶点D恰好落在AB边上的点F处,延长CE交BA的延长线于点G.

    (1)求线段AE的长;
    (2)求证四边形DGFC为菱形;
    (3)如图2,M,N分别是线段CG,DG上的动点(与端点不重合),且∠DMN=∠DCM,设DN=x,是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.

    15.(2021•贵阳)(1)阅读理解
    我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
    根据“赵爽弦图”写出勾股定理和推理过程;
    (2)问题解决
    勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
    (3)拓展探究
    如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
    已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).

    16.(2020•安顺)如图,四边形ABCD是正方形,点O为对角线AC的中点.
    (1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是    ,位置关系是    ;
    (2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
    (3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.

    一十一.扇形面积的计算(共1小题)
    17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是    ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    一十二.作图—应用与设计作图(共1小题)
    18.(2020•安顺)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
    (1)在图①中,画一个直角三角形,使它的三边长都是有理数;
    (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
    (3)在图③中,画一个直角三角形,使它的三边长都是无理数.

    一十三.相似三角形的判定与性质(共3小题)
    19.(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠PAD=∠AED,且DE=,AE平分∠BAD,AE与BD交于点F.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠DAE=,求EF的长;
    (3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.

    20.(2020•安顺)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
    (1)求证:四边形AEFD是平行四边形;
    (2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

    21.(2020•安顺)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
    (1)求证:AD=CD;
    (2)若AB=4,BF=5,求sin∠BDC的值.

    一十四.解直角三角形的应用-仰角俯角问题(共3小题)
    22.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
    (1)求坡面CB的坡度;
    (2)求基站塔AB的高.

    23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    24.(2020•安顺)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    一十五.扇形统计图(共1小题)
    25.(2020•安顺)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
    部分初三学生每天听空中黔课时间的人数统计表
    时间/h
    1.5
    2
    2.5
    3
    3.5
    4
    人数/人
    2
    6
    6
    10
    m
    4
    (1)本次共调查的学生人数为   ,在表格中,m=   ;
    (2)统计的这组数据中,每天听空中黔课时间的中位数是   ,众数是   ;
    (3)请就疫情期间如何学习的问题写出一条你的看法.

    一十六.条形统计图(共1小题)
    26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:

    贵州省历次人口普查城镇人口统计表
    年份
    1953
    1964
    1982
    1990
    2000
    2010
    2020
    城镇人口(万人)
    110
    204
    540
    635
    845
    1175
    2050
    城镇化率
    7%
    12%
    19%
    20%
    24%
    a
    53%
    (1)这七次人口普查乡村人口数的中位数是    万人;
    (2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是    (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是    万人(结果保留整数);
    (3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
    一十七.加权平均数(共1小题)
    27.(2022•安顺)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:
    睡眠时间
    频数
    频率
    t<7
    3
    0.06
    7≤t<8
    a
    0.16
    8≤t<9
    10
    0.20
    9≤t<10
    24
    b
    t≥10
    5
    0.10
    请根据统计表中的信息回答下列问题.
    (1)a=   ,b=   ;
    (2)请估计该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;
    (3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
    一十八.列表法与树状图法(共1小题)
    28.(2020•安顺)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
    (1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
    (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.

    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题
    参考答案与试题解析
    一.完全平方公式(共1小题)
    1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
    (2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
    a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣1)……第一步
    =a+a2﹣a2﹣1……第二步
    =a﹣1……第三步
    小红的解答从第  一 步开始出错,请写出正确的解答过程.
    【解答】(1)解:第一种组合:,
    解不等式①,得x<﹣2,
    解不等式②,得x<﹣3
    ∴原不等式组的解集是x<﹣3;

    第二种组合:,
    解不等式①,得x<﹣2,
    解不等式②,得x>3,
    ∴原不等式组无解;

    第三种组合:,
    解不等式①,得x<﹣3,
    解不等式②,得x>3,
    ∴原不等式组无解;
    (任选其中一种组合即可);
    (2)一,
    解:a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣2a+1)
    =a+a2﹣a2+2a﹣1
    =3a﹣1.
    故答案为一.
    二.整式的混合运算—化简求值(共1小题)
    2.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.
    (2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.
    【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣
    =1+1+2×+﹣1﹣2
    =2++﹣1﹣2
    =1;
    (2)(x+3)2+(x+3)(x﹣3)﹣2x(x+1)
    =x2+6x+9+x2﹣9﹣2x2﹣2x
    =4x,
    当x=时,原式=4×=2.
    三.一元一次不等式的应用(共1小题)
    3.(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.
    (1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?
    (2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?
    【解答】解:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,
    依题意得:﹣=4,
    解得:x=600,
    经检验,x=600是原方程的解,且符合题意,
    则2x=2×600=1200.
    答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1200千克;
    (2)设把y亩B块试验田改种杂交水稻,
    依题意得:9600+600(﹣y)+1200y≥17700,
    解得:y≥3.
    答:至少把3亩B块试验田改种杂交水稻.
    四.一次函数的应用(共2小题)
    4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1


    制作一件产品所获利润(元)
    20
    3
    10
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
    【解答】解:(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,
    由题意得:,
    解得:,
    答:制作展板数量10件,宣传册数量50件,横幅数量10件;
    (2)设制作三种产品总量为w件,展板数量m件,则宣传册数量5m件,横幅数量(w﹣6m)件,
    由题意得:20m+3×5m+10(w﹣6m)=700,
    解得:w=m+70,
    ∵,
    解得:0<m<20,
    ∵w,m是整数,
    ∴m的最小值为2,
    ∴w是m的一次函数,
    ∵k=,
    ∴w随m的增加而增加,
    ∵三种产品均有制作,且w,m均为正整数,
    ∴当m=2时,w有最小值,则wmin=75,
    答:制作三种产品总量的最小值为75件.
    5.(2020•安顺)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:

    (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
    (2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
    【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:
    6x+10(100﹣x)=1300﹣378,
    解得x=19.5,
    因为钢笔的数量不可能是小数,所以学习委员搞错了;

    (2)设笔记本的单价为a元,根据题意,得:
    6x+10(100﹣x)+a=1300﹣378,
    整理,得:x=,
    因为0<a<10,x随a的增大而增大,所以19.5<x<22,
    ∵x取整数,
    ∴x=20,21.
    当x=20时,a=4×20﹣78=2;
    当x=21时,a=4×21﹣78=6,
    所以笔记本的单价可能是2元或6元.
    五.反比例函数与一次函数的交点问题(共3小题)
    6.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于C,P(﹣8,﹣2)两点.
    (1)求该反比例函数的解析式及m的值;
    (2)判断点B是否在该反比例函数的图象上,并说明理由.

    【解答】解:(1)把P(﹣8,﹣2)代入y=得:
    ﹣2=,
    解得k=16,
    ∴反比例函数的解析式为y=,
    ∵C(4,m)在反比例函数y=的图象上,
    ∴m==4;
    ∴反比例函数的解析式为y=,m=4;
    (2)B在在反比例函数的图象上,理由如下:
    连接AC,BD交于H,如图:

    把C(4,4),P(﹣8,﹣2)代入y=ax+b得:

    解得,
    ∴直线CD的解析式是y=x+2,
    在y=x+2中,令x=0得y=2,
    ∴D(0,2),
    ∵四边形ABCD是菱形,
    ∴H是AC中点,也是BD中点,
    由A(4,0),C(4,4)可得H(4,2),
    设B(p,q),
    ∵D(0,2),
    ∴,
    解得,
    ∴B(8,2),
    在y=中,令x=8得y=2,
    ∴B在反比例函数的图象上.
    7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
    (1)求点A的坐标及m的值;
    (2)若AB=2,求一次函数的表达式.

    【解答】解:(1)令y=0,则kx﹣2k=0,
    ∴x=2,
    ∴A(2,0),
    设C(a,b),
    ∵CB⊥y轴,
    ∴B(0,b),
    ∴BC=﹣a,
    ∵S△ABC=3,
    ∴,
    ∴ab=﹣6,
    ∴m﹣1=ab=﹣6,
    ∴m=﹣5,
    即A(2,0),m=﹣5;
    (2)在Rt△AOB中,AB2=OA2+OB2,
    ∵,
    ∴b2+4=8,
    ∴b2=4,
    ∴b=±2,
    ∵b>0,
    ∴b=2,
    ∴a=﹣3,
    ∴C(﹣3,2),
    将C(﹣3,2)代入到直线解析式中得,
    ∴一次函数的表达式为.
    8.(2020•安顺)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
    (1)求反比例函数的表达式;
    (2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
    (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.

    【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),
    将(2,3)代入反比例函数表达式并解得:k=2×3=6,
    故反比例函数表达式为:y=①;

    (2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,
    联立①②并解得:,
    故交点坐标为(﹣2,﹣3)和(3,2);

    (3)设一次函数的表达式为:y=kx+5③,
    联立①③并整理得:kx2+5x﹣6=0,
    ∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,
    故可以取k=﹣2(答案不唯一),
    故一次函数表达式为:y=﹣2x+5(答案不唯一).
    六.二次函数的应用(共2小题)
    9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
    (1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
    (2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点O.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
    (3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.

    【解答】解:(1)如图②,由题意得:水面宽OA是8m,桥拱顶点B到水面的距离是4m,
    结合函数图象可知,顶点B (4,4),点O (0,0),
    设二次函数的表达式为y=a(x﹣4)2+4,
    将点O (0,0)代入函数表达式,
    解得:a=﹣,
    ∴二次函数的表达式为y=﹣(x﹣4)2+4,
    即y=﹣x2+2x (0≤x≤8);
    (2)工人不会碰到头,理由如下:
    ∵打捞船距O点0.4m,打捞船宽1.2m,工人直立在打捞船中间,
    由题意得:工人距O点距离为0.4+×1.2=1,
    ∴将x=1代入y=﹣x2+2x,
    解得:y==1.75,
    ∵1.75m>1.68m,
    ∴此时工人不会碰到头;
    (3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.
    如图所示,

    新函数图象的对称轴也是直线x=4,
    此时,当0≤x≤4或x≥8时,y的值随x值的增大而减小,
    将新函数图象向右平移m个单位长度,可得平移后的函数图象,
    如图所示,

    ∵平移不改变图形形状和大小,
    ∴平移后函数图象的对称轴是直线x=4+m,
    ∴当m≤x≤4+m或x≥8+m时,y的值随x值的增大而减小,
    ∴当8≤x≤9时,y的值随x值的增大而减小,结合函数图象,
    得m的取值范围是:
    ①m≤8且4+m≥9,得5≤m≤8,
    ②8+m≤8,得m≤0,
    由题意知m>0,
    ∴m≤0不符合题意,舍去,
    综上所述,m的取值范围是5≤m≤8.
    10.(2020•安顺)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
    时间x(分钟)
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    9~15
    人数y(人)
    0
    170
    320
    450
    560
    650
    720
    770
    800
    810
    810
    (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
    (2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
    (3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
    【解答】解:(1)由表格中数据的变化趋势可知,
    ①当0≤x≤9时,y是x的二次函数,
    ∵当x=0时,y=0,
    ∴二次函数的关系式可设为:y=ax2+bx,
    由题意可得:,
    解得:,
    ∴二次函数关系式为:y=﹣10x2+180x,
    ②当9<x≤15时,y=810,
    ∴y与x之间的函数关系式为:y=;
    (2)设第x分钟时的排队人数为w人,
    由题意可得:w=y﹣40x=,
    ①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,
    ∴当x=7时,w的最大值=490,
    ②当9<x≤15时,w=810﹣40x,w随x的增大而减小,
    ∴210≤w<450,
    ∴排队人数最多时是490人,
    要全部考生都完成体温检测,根据题意得:810﹣40x=0,
    解得:x=20.25,
    答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;
    (3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,
    解得m≥,
    ∵m是整数,
    ∴m≥的最小整数是2,
    ∴一开始就应该至少增加2个检测点.
    七.二次函数综合题(共1小题)
    11.(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.
    (1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;
    (2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).
    ①求a,c的值;
    ②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.
    【解答】解:(1)存在和谐点,理由如下,
    设函数y=2x+1的和谐点为(x,x),
    ∴2x+1=x,
    解得x=﹣1,
    ∴和谐点为(﹣1,﹣1);
    (2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,
    ∴=a+15+c,
    ∴c=﹣a﹣,
    ∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,
    ∴ax2+6x+c=x有且只有一个根,
    ∴Δ=25﹣4ac=0,
    ∴a=﹣1,c=﹣;
    ②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,
    ∴抛物线的对称轴为直线x=3,
    当x=1时,y=﹣1,
    当x=3时,y=3,
    当x=5时,y=﹣1,
    ∵函数的最大值为3,最小值为﹣1;
    当3≤m≤5时,函数的最大值为3,最小值为﹣1.
    八.全等三角形的判定与性质(共1小题)
    12.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.
    (1)求证:△ABD≌△ACE;
    (2)若∠BAD=22.5°时,求BD的长.

    【解答】(1)证明:∵∠BAC=90°=∠DAE,
    ∴∠BAD=∠CAE,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS);
    (2)解:∵∠BAC=90°,AB=AC=1,
    ∴BC=,∠B=∠ACB=45°,
    ∵∠BAD=22.5°,
    ∴∠ADC=67.5°=∠CAD,
    ∴AC=CD=1,
    ∴BD=﹣1.
    九.矩形的性质(共1小题)
    13.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
    (1)求证:△ABN≌△MAD;
    (2)若AD=2,AN=4,求四边形BCMN的面积.

    【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,
    ∴∠BAN=∠AMD,
    ∵BN⊥AM,
    ∴∠BNA=90°,
    在△ABN和△MAD中,

    ∴△ABN≌△MAD(AAS);
    (2)解:∵△ABN≌△MAD,
    ∴BN=AD,
    ∵AD=2,
    ∴BN=2,
    又∵AN=4,
    在Rt△ABN中,AB===2,
    ∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,
    ∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.
    一十.四边形综合题(共3小题)
    14.(2022•安顺)如图1,在矩形ABCD中,AB=10,AD=8,E是AD边上的一点,连接CE,将矩形ABCD沿CE折叠,顶点D恰好落在AB边上的点F处,延长CE交BA的延长线于点G.

    (1)求线段AE的长;
    (2)求证四边形DGFC为菱形;
    (3)如图2,M,N分别是线段CG,DG上的动点(与端点不重合),且∠DMN=∠DCM,设DN=x,是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.

    【解答】(1)解:∵四边形ABCD是矩形,
    ∴∠DAB=∠B=∠ADC=90°,CD=BD=10,BC=AD=8,
    在Rt△BCF中,CF=CD=10,BC=8,
    ∴BF=6,
    ∴AF=AB﹣BF=4,
    设AE=x,则EF=DE=8﹣x,
    在Rt△AEF中,由勾股定理得,
    EF2﹣AE2=AF2,
    ∴(8﹣x)2﹣x2=42,
    ∴x=3,
    ∴AE=3;
    (2)证明:∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴△AGE∽△DCE,
    ∴,
    由(1)得:AE=3,
    ∴DE=8﹣3=5,
    ∴,
    ∴AG=6,
    ∴FG=AF+AG=4+6=10,
    ∴FG=CD,
    ∴四边形DGFC是平行四边形,
    ∵CD=CF,
    ∴▱DGFC是菱形;
    (3)解:∵四边形FGDC是菱形,
    ∴∠DGC=∠DCG=∠FGC=,DG=CD=10,
    在Rt△BCG中,BC=8,BG=BF+FG=6+10=16,
    ∴tan∠FGC=,CG===8,
    ∴sin∠FCG==,
    如图1,

    当∠MDN=90°时,
    在Rt△GDM中,
    DM=DG•tan∠DGM=10•tan∠FGC=10×=5,
    在Rt△DMN中,
    DN=DM•tan∠DMN,
    ∵∠DMN=∠DCM,∠DCM=∠FGC,
    ∴DN=DM•tan∠FGC=5×=,
    如图2,

    当∠MND=90°时,∠DMN+∠GDM=90°,
    ∵∠DMN=∠DCM=∠DGM,
    ∴∠DGM+∠GDM=90°,
    ∴∠DMG=90°,
    ∴DM=DG•sin∠DGM=10×=2,
    在Rt△DMN中,
    DN=DM•sin∠DMN=DM•sin∠FGC=2×=2,
    综上所述:DN=或2.
    15.(2021•贵阳)(1)阅读理解
    我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
    根据“赵爽弦图”写出勾股定理和推理过程;
    (2)问题解决
    勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
    (3)拓展探究
    如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
    已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).

    【解答】解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:
    ∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,
    ∴4△ADE的面积+正方形EFGH的面积=正方形ABCD的面积,
    即4×ab+(b﹣a)2=c2,
    整理得:a2+b2=c2;
    (2)由题意得:正方形ACDE被分成4个全等的四边形,
    设EF=a,FD=b,
    分两种情况:
    ①a>b时,
    ∴a+b=12,
    ∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,
    ∴E'F'=EF,KF'=FD,E'K=BC=5,
    ∵E'F'﹣KF'=E'K,
    ∴a﹣b=5,
    ∴,
    解得:a=,
    ∴EF=;
    ②a<b时,同①得:,
    解得:a=,
    ∴EF=;
    综上所述,EF为或;
    (3)c+b=n,理由如下:
    如图③所示:
    设正方形E的边长为e,正方形F的边长为f,
    ∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,
    ∴△PMQ∽△D'OE'∽△B'C'A',
    ∴=,=,
    即=,=,
    ∴e2=cn,f2=bn,
    在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,
    ∴cn+bn=n2,
    ∴c+b=n.



    16.(2020•安顺)如图,四边形ABCD是正方形,点O为对角线AC的中点.
    (1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是  PQ=BO ,位置关系是  PQ⊥BO ;
    (2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
    (3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.

    【解答】解:(1)∵点O为对角线AC的中点,
    ∴BO⊥AC,BO=CO,
    ∵P为BC的中点,Q为BO的中点,
    ∴PQ∥OC,PQ=OC,
    ∴PQ⊥BO,PQ=BO;
    故答案为:PQ=BO,PQ⊥BO.
    (2)△PQB的形状是等腰直角三角形.理由如下:
    连接O'P并延长交BC于点F,

    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,
    ∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,
    ∴∠O'EP=∠FCP,∠PO'E=∠PFC,
    又∵点P是CE的中点,
    ∴CP=EP,
    ∴△O'PE≌△FPC(AAS),
    ∴O'E=FC=O'A,O'P=FP,
    ∴AB﹣O'A=CB﹣FC,
    ∴BO'=BF,
    ∴△O'BF为等腰直角三角形.
    ∴BP⊥O'F,O'P=BP,
    ∴△BPO'也为等腰直角三角形.
    又∵点Q为O'B的中点,
    ∴PQ⊥O'B,且PQ=BQ,
    ∴△PQB的形状是等腰直角三角形;
    (3)延长O'E交BC边于点G,连接PG,O'P.

    ∵四边形ABCD是正方形,AC是对角线,
    ∴∠ECG=45°,
    由旋转得,四边形O'ABG是矩形,
    ∴O'G=AB=BC,∠EGC=90°,
    ∴△EGC为等腰直角三角形.
    ∵点P是CE的中点,
    ∴PC=PG=PE,∠CPG=90°,∠EGP=45°,
    ∴△O'GP≌△BCP(SAS),
    ∴∠O'PG=∠BPC,O'P=BP,
    ∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,
    ∴∠O'PB=90°,
    ∴△O'PB为等腰直角三角形,
    ∵点Q是O'B的中点,
    ∴PQ=O'B=BQ,PQ⊥O'B,
    ∵AB=1,
    ∴O'A=,
    ∴O'B===,
    ∴BQ=.
    ∴S△PQB=BQ•PQ=×=.
    一十一.扇形面积的计算(共1小题)
    17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是  BE=EM ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    【解答】解:(1)∵AC为⊙O的直径,点E是的中点,
    ∴∠ABE=45°,
    ∵AB⊥EN,
    ∴△BME是等腰直角三角形,
    ∴BE=EM,
    故答案为BE=EM;

    (2)连接EO,
    ∵AC是⊙O的直径,E是的中点,
    ∴∠AOE=90°,
    ∴∠ABE=∠AOE=45°,
    ∵EN⊥AB,垂足为点M,
    ∴∠EMB=90°
    ∴∠ABE=∠BEN=45°,
    ∴=,
    ∵点E是的中点,
    ∴=,
    ∴=,
    ∴﹣=﹣,
    ∴=;

    (3)连接AE,OB,ON,
    ∵EN⊥AB,垂足为点M,
    ∴∠AME=∠EMB=90°,
    ∵BM=1,由(2)得∠ABE=∠BEN=45°,
    ∴EM=BM=1,
    又∵BE=EM,
    ∴BE=,
    ∵在Rt△AEM中,EM=1,AM=,
    ∴tan∠EAB==,
    ∴∠EAB=30°,
    ∵∠EAB=∠EOB,
    ∴∠EOB=60°,
    又∵OE=OB,
    ∴△EOB是等边三角形,
    ∴OE=BE=,
    又∵=,
    ∴BE=CN,
    ∴△OEB≌△OCN(SSS),
    ∴CN=BE=
    又∵S扇形OCN==,S△OCN=CN×CN=×=,
    ∴S阴影=S扇形OCN﹣S△OCN=﹣.

    一十二.作图—应用与设计作图(共1小题)
    18.(2020•安顺)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
    (1)在图①中,画一个直角三角形,使它的三边长都是有理数;
    (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
    (3)在图③中,画一个直角三角形,使它的三边长都是无理数.

    【解答】解:(1)如图①中,△ABC即为所求.
    (2)如图②中,△ABC即为所求.
    (3)△ABC即为所求.

    一十三.相似三角形的判定与性质(共3小题)
    19.(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠PAD=∠AED,且DE=,AE平分∠BAD,AE与BD交于点F.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠DAE=,求EF的长;
    (3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.

    【解答】(1)证明:∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠DAB+∠ABD=90°,
    ∵∠PAD=∠AED,∠AED=∠ABD,
    ∴∠PAD=∠ABD,
    ∴∠DAB+∠PAD=90°,即∠ABP=90°,
    ∴AB⊥PB,
    ∵AB是⊙O的直径,
    ∴BP是⊙O的切线;
    (2)解:连接BE,如图:

    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∵AE平分∠BAD,
    ∴∠DAE=∠BAE,
    ∴=,∠DAE=∠BAE=∠DBE,
    ∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,
    ∴=,
    ∴EF=1;
    (3)解:连接OE,如图:

    ∵OE=OA,
    ∴∠AEO=∠OAE,
    ∵∠OAE=∠DAE,
    ∴∠AEO=∠DAE,
    ∴OE∥AD,
    ∴=,
    ∵OA=OB=BC,
    ∴=2,
    ∴=2,
    ∵DE=,
    ∴CE=2,CD=CE+DE=3
    设BC=OB=OA=R,
    ∵∠BDC=∠BAE,∠C=∠C,
    ∴△CBD∽△CEA,
    ∴=,即=,
    ∴R=2,
    ∴⊙O的半径是2.
    20.(2020•安顺)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
    (1)求证:四边形AEFD是平行四边形;
    (2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

    【解答】(1)证明:∵∠四边形ABCD是矩形,
    ∴AD∥BC,AD=BC,
    ∵BE=CF,
    ∴BE+EC=EC+CF,即BC=EF,
    ∴AD=EF,
    ∴四边形AEFD是平行四边形;
    (2)解:连接DE,如图,
    ∵四边形ABCD是矩形,
    ∴∠B=90°,
    在Rt△ABE中,AE==2,
    ∵AD∥BC,
    ∴∠AEB=∠EAD,
    ∵∠B=∠AED=90°,
    ∴△ABE∽△DEA,
    ∴AE:AD=BE:AE,
    ∴AD==10,
    ∵AB=4,
    ∴四边形AEFD的面积=AB×AD=4×10=40.

    21.(2020•安顺)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
    (1)求证:AD=CD;
    (2)若AB=4,BF=5,求sin∠BDC的值.

    【解答】解:(1)证明:∵∠CAD=∠ABD,
    又∵∠ABD=∠ACD,
    ∴∠ACD=∠CAD,
    ∴AD=CD;

    (2)∵AF是⊙O的切线,
    ∴∠FAB=90°,
    ∵AB是⊙O的直径,
    ∴∠ACB=∠ADB=∠ADF=90°,
    ∴∠ABD+∠BAD=∠BAD+∠FAD=90°,
    ∴∠ABD=∠FAD,
    ∵∠ABD=∠CAD,
    ∴∠FAD=∠EAD,
    ∵AD=AD,
    ∴△ADF≌△ADE(ASA),
    ∴AF=AE,DF=DE,
    在Rt△ADE中,AB=4,BF=5,
    ∴AF=,
    ∴AE=AF=3,
    ∵,
    ∴,
    ∴DE=,
    ∴BE=BF﹣2DE=,
    ∵∠AED=∠BEC,∠ADE=∠BCE=90°,
    ∴△BEC∽△AED,
    ∴,
    ∴,
    ∴,
    ∵∠BDC=∠BAC,
    在Rt△ACB中,∠ACB=90°
    ∴.
    法二、如图,连接OD,AC交于点H,

    ∵AD=CD,
    ∴OD⊥AC,
    设OH为x,则HD为2﹣x,
    ∵AF与⊙O相切,
    ∴∠BAF=90°,
    ∵AB=4,BF=5,
    ∴AF=3,OA=2,
    ∵AD⊥BF,
    ∴AD==,
    ∴OA2﹣OH2=AD2﹣HD2,即22﹣x2=()2﹣(2﹣x)2,
    解得x=,
    ∴sin∠BDC==.

    一十四.解直角三角形的应用-仰角俯角问题(共3小题)
    22.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
    (1)求坡面CB的坡度;
    (2)求基站塔AB的高.

    【解答】解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.

    由题意可知:CD=50米,DM=30米.
    在Rt△CDM中,由勾股定理得:CM2=CD2﹣DM2,
    ∴CM=40米,
    ∴斜坡CB的坡度=DM:CM=3:4;
    (2)设DF=4a米,则MN=4a米,BF=3a米,
    ∵∠ACN=45°,
    ∴∠CAN=∠ACN=45°,
    ∴AN=CN=(40+4a)米,
    ∴AF=AN﹣NF=AN﹣DM=40+4a﹣30=(10+4a)米.
    在Rt△ADF中,
    ∵DF=4a米,AF=(10+4a)米,∠ADF=53°,
    ∴tan∠ADF=,
    ∴=,
    ∴解得a=,
    ∴AF=10+4a=10+30=40(米),
    ∵BF=3a=米,
    ∴AB=AF﹣BF=40﹣=(米).
    答:基站塔AB的高为米.
    23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,
    ∵∠EBD=∠FDB=∠DFE=90°,
    ∴四边形BDFE为矩形,
    ∴EF=BD,DF=BE=1.6m,
    ∴AF=AD﹣DF=41.6﹣1.6=40(m),
    在Rt△AEF中,sin∠AEF===,
    即sinα=.
    答:仰角α的正弦值为;
    (2)在Rt△AEF中,EF===30(m),
    在Rt△ACD中,∠ACD=63°,AD=41.6m,
    ∵tan∠ACD=,
    ∴CD==≈21.22(m),
    ∴BC=BD+CD=30+21.22≈51(m).
    答:B,C两点之间的距离约为51m.

    24.(2020•安顺)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
    ∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
    在Rt△AGE中,∠AGE=90°,∠AEG=35°,
    ∵tan∠AEG=tan35°=,EG=6,
    ∴AG=6×0.7=4.2(米);
    答:屋顶到横梁的距离AG约为4.2米;
    (2)过E作EH⊥CB于H,
    设EH=x,
    在Rt△EDH中,∠EHD=90°,∠EDH=60°,
    ∵tan∠EDH=,
    ∴DH=,
    在Rt△ECH中,∠EHC=90°,∠ECH=35°,
    ∵tan∠ECH=,
    ∴CH=,
    ∵CH﹣DH=CD=8,
    ∴﹣=8,
    解得:x≈9.52,
    ∴AB=AG+BG=13.72≈14(米),
    答:房屋的高AB约为14米.

    一十五.扇形统计图(共1小题)
    25.(2020•安顺)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
    部分初三学生每天听空中黔课时间的人数统计表
    时间/h
    1.5
    2
    2.5
    3
    3.5
    4
    人数/人
    2
    6
    6
    10
    m
    4
    (1)本次共调查的学生人数为 50 ,在表格中,m= 22 ;
    (2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5 ,众数是 3.5 ;
    (3)请就疫情期间如何学习的问题写出一条你的看法.

    【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),
    m=50×44%=22,
    故答案为:50,22;

    (2)由题意得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,
    ∵第25个数和第26个数都是3.5,
    ∴中位数是3.5;
    ∵3.5出现了22次,出现的次数最多,
    ∴众数是3.5,
    故答案为:3.5,3.5;

    (3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).
    一十六.条形统计图(共1小题)
    26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:

    贵州省历次人口普查城镇人口统计表
    年份
    1953
    1964
    1982
    1990
    2000
    2010
    2020
    城镇人口(万人)
    110
    204
    540
    635
    845
    1175
    2050
    城镇化率
    7%
    12%
    19%
    20%
    24%
    a
    53%
    (1)这七次人口普查乡村人口数的中位数是  2300 万人;
    (2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是  34% (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是  271 万人(结果保留整数);
    (3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
    【解答】解:(1)这七次人口普查乡村人口数从小到大排列为:1391,1511,1818,2300,2315,2616,2680,
    ∴中位数是第四个数2300,
    故答案为:2300;
    (2)1175÷(2300+1175)×100%≈34%,
    (2050+1818)×60%﹣2050≈271(万人),
    故答案为:34%,271;
    (3)随着年份的增加,城镇化率越来越高.
    一十七.加权平均数(共1小题)
    27.(2022•安顺)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:
    睡眠时间
    频数
    频率
    t<7
    3
    0.06
    7≤t<8
    a
    0.16
    8≤t<9
    10
    0.20
    9≤t<10
    24
    b
    t≥10
    5
    0.10
    请根据统计表中的信息回答下列问题.
    (1)a= 8 ,b= 0.48 ;
    (2)请估计该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;
    (3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
    【解答】解:(1)本次抽取的学生有:3÷0.06=50(人),
    a=50×0.16=8,b=24÷50=0.48,
    故答案为:8,0.48;
    (2)600×(0.06+0.16+0.20)
    =600×0.42
    =252(人),
    答:估计该校600名七年级学生中平均每天的睡眠时间不足9小时的有252人;
    (3)根据表格中的数据可知,有接近一半的学生的睡眠时间不足9小时,给学校的建议是:近期组织一次家长会,就学生们的睡眠时间进行强调,要求家长监管好孩子们的睡眠时间,要不少于9小时.
    一十八.列表法与树状图法(共1小题)
    28.(2020•安顺)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
    (1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
    (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.
    【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,
    画树状图如图:

    共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,
    ∴恰好抽到2张卡片都是《辞海》的概率为=;
    (2)设应添加x张《消防知识手册》卡片,
    由题意得:=,
    解得:x=4,
    经检验,x=4是原方程的解;
    答:应添加4张《消防知识手册》卡片.

    相关试卷

    贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题(含解析): 这是一份贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题(含解析),共47页。试卷主要包含了计算等内容,欢迎下载使用。

    贵州省安顺市三年(2020-2022)中考数学真题分类汇编-选择题: 这是一份贵州省安顺市三年(2020-2022)中考数学真题分类汇编-选择题,共26页。

    贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题: 这是一份贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题,共47页。试卷主要包含了计算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map