四川省2022年各地区中考数学真题按题型分层分类汇编-03选择题(中档题)
展开四川省2022年各地区中考数学真题按题型分层分类汇编-03选择题(中档题)
一.实数与数轴(共1小题)
1.(2022•内江)如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0 D.|a|﹣|b|>0
二.分式的乘除法(共1小题)
2.(2022•德阳)下列计算正确的是( )
A.(a﹣b)2=a2﹣b2 B.=1
C.a÷a•=a D.(﹣ab2)3=﹣a3b6
三.分式的化简求值(共1小题)
3.(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是( )
A. B.﹣ C. D.﹣
四.一次函数的性质(共1小题)
4.(2022•凉山州)一次函数y=3x+b(b≥0)的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
五.反比例函数的图象(共1小题)
5.(2022•德阳)一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是( )
A. B.
C. D.
六.反比例函数与一次函数的交点问题(共1小题)
6.(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为( )
A.38 B.22 C.﹣7 D.﹣22
七.二次函数图象与系数的关系(共4小题)
7.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
8.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
9.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是( )
A.a>0
B.a+b=3
C.抛物线经过点(﹣1,0)
D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
10.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
八.二次函数图象上点的坐标特征(共1小题)
11.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有( )个.
A.2 B.3 C.4 D.5
九.抛物线与x轴的交点(共2小题)
12.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
13.(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是( )
A.a≥ B.a> C.0<a< D.0<a≤
一十.二次函数与不等式(组)(共1小题)
14.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
一十一.二次函数的应用(共1小题)
15.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2
C.方案3 D.方案1或方案2
一十二.二次函数综合题(共1小题)
16.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.
其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
一十三.三角形的面积(共1小题)
17.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
一十四.勾股定理(共2小题)
18.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B.3 C.2 D.
19.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1 B.DC=3 C.AE=5 D.AC=9
一十五.等腰直角三角形(共1小题)
20.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是( )
A.①②④ B.①②③ C.①③④ D.①②③④
一十六.多边形内角与外角(共1小题)
21.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是( )
A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E
一十七.平行四边形的性质(共1小题)
22.(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
A.2 B.4 C.6 D.8
一十八.平行四边形的判定(共1小题)
23.(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )
A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF
一十九.正方形的性质(共1小题)
24.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为( )
A. B. C. D.1
二十.中点四边形(共1小题)
25.(2022•德阳)如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是( )
A.四边形EFGH是矩形
B.四边形EFGH的内角和小于四边形ABCD的内角和
C.四边形EFGH的周长等于四边形ABCD的对角线长度之和
D.四边形EFGH的面积等于四边形ABCD的面积的
二十一.圆周角定理(共1小题)
26.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为( )
A.70° B.65° C.50° D.45°
二十二.圆内接四边形的性质(共1小题)
27.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是( )
A.90° B.100° C.110° D.120°
二十三.正多边形和圆(共1小题)
28.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )
A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
二十四.轴对称-最短路线问题(共1小题)
29.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE+PF的最小值是( )
A.2 B. C.1.5 D.
二十五.旋转的性质(共1小题)
30.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
二十六.相似三角形的判定与性质(共4小题)
31.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
32.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为( )
A. B.3 C.2 D.4
33.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
A.9 B.12 C.15 D.18
34.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
二十七.解直角三角形(共2小题)
35.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )
A.2 B.3 C. D.2
36.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A.y=3x B.y=﹣x+ C.y=﹣2x+11 D.y=﹣2x+12
二十八.简单几何体的三视图(共1小题)
37.(2022•雅安)下列几何体的三种视图都是圆形的是( )
A. B. C. D.
二十九.列表法与树状图法(共1小题)
38.(2022•绵阳)某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环保小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验.甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( )
A. B. C. D.
四川省2022年各地区中考数学真题按题型分层分类汇编-03选择题(中档题)
参考答案与试题解析
一.实数与数轴(共1小题)
1.(2022•内江)如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0 D.|a|﹣|b|>0
【解答】解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A选项的结论成立;
∵a<b,
∴﹣a>﹣b,
∴B选项的结论不成立;
∵﹣2<a<﹣1,2<b<3,
∴|a|<|b|,
∴a+b>0,
∴C选项的结论不成立;
∵﹣2<a<﹣1,2<b<3,
∴|a|<|b|,
∴|a|﹣|b|<0,
∴D选项的结论不成立.
故选:A.
二.分式的乘除法(共1小题)
2.(2022•德阳)下列计算正确的是( )
A.(a﹣b)2=a2﹣b2 B.=1
C.a÷a•=a D.(﹣ab2)3=﹣a3b6
【解答】解:A.(a﹣b)2=a2﹣2ab+b2,故A选项错误,不符合题意;
B.==1,故B选项正确,符合题意;
C.a÷a•=1×=,故C选项错误,不符合题意;
D.(﹣ab2)3=﹣a3b6,故D选项错误,不符合题意.
故选:B.
三.分式的化简求值(共1小题)
3.(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是( )
A. B.﹣ C. D.﹣
【解答】解:(+)2÷(﹣)
=÷
=•
=﹣,
∵a2+b2=3ab,
∴(a+b)2=5ab,(a﹣b)2=ab,
∵a>b>0,
∴a+b=,a﹣b=,
∴﹣=﹣=﹣=﹣,
故选:B.
四.一次函数的性质(共1小题)
4.(2022•凉山州)一次函数y=3x+b(b≥0)的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,
∴当b=0时,此函数的图象经过一、三象限,不经过第四象限;
当b>0时,此函数的图象经过一、二、三象限,不经过第四象限.
则一定不经过第四象限.
故选:D.
五.反比例函数的图象(共1小题)
5.(2022•德阳)一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是( )
A. B.
C. D.
【解答】解:分两种情况:
(1)当a>0,时,一次函数y=ax+1的图象过第一、二、三象限,反比例函数y=﹣图象在第二、四象限,无选项符合;
(2)当a<0,时,一次函数y=ax+1的图象过第一、二、四象限,反比例函数y=﹣图象在第一、三象限,故B选项正确.
故选:B.
六.反比例函数与一次函数的交点问题(共1小题)
6.(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为( )
A.38 B.22 C.﹣7 D.﹣22
【解答】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=﹣,
∴PQ=PM+MQ=b﹣.
∵点P在反比例函数y=的图象上,
∴ab=8.
∵S△POQ=15,
∴PQ•OM=15,
∴×a(b﹣)=15.
∴ab﹣k=30.
∴8﹣k=30,
解得:k=﹣22.
故选:D.
七.二次函数图象与系数的关系(共4小题)
7.(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴是直线x=1,
∴1=﹣,
∴b=﹣2a,
∴b<0,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵抛物线y=ax2﹣2ax+c经过(3,0),
∴9a﹣6a+c=0,
∴c=﹣3a,
∴2c﹣3b=﹣6a+6a=0,故②错误,
5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,
观察图象可知,y1<y2<y3,故④正确,
故选:B.
8.(2022•广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【解答】解:∵抛物线的开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=2,
∴b>0,
∵抛物线交y轴的正半轴,
∴c>0,
∴abc<0,所以(1)正确;
∵对称轴为直线x=2,
∴﹣=2,
∴b=﹣4a,
∴b+4a=0,
∴b=﹣4a,
∵经过点(﹣1,0),
∴a﹣b+c=0,
∴c=b﹣a=﹣4a﹣a=﹣5a,
∴4a+c﹣2b=4a﹣5a+8a=7a,
∵a<0,
∴4a+c﹣2b<0,
∴4a+c<2b,故(2)不正确;
∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;
∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,
∴y1<y2<y3,故(4)错误;
当x=2时,函数有最大值4a+2b+c,
∴4a+2b+c≥am2+bm+c,
4a+2b≥m(am+b)(m为常数),故(5)正确;
综上所述:正确的结论有(1)(3)(5),共3个,
故选:C.
9.(2022•凉山州)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是( )
A.a>0
B.a+b=3
C.抛物线经过点(﹣1,0)
D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
【解答】解:由题意作图如下:
由图知,a>0,
故A选项说法正确,不符合题意,
∵抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),
∴a+b+c=0,c=﹣3,
∴a+b=3,
故B选项说法正确,不符合题意,
∵对称轴在y轴的左侧,
∴抛物线不经过(﹣1,0),
故C选项说法错误,符合题意,
由图知,抛物线y=ax2+bx+c与直线y=﹣1有两个交点,故关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,
故D选项说法正确,不符合题意,
故选:C.
10.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),
∴该抛物线的对称轴为直线x=﹣=m,
∵当x1+x2>4且x1<x2时,都有y1<y2,
∴当m>0时,
0<2m≤4,
解得0<m≤2;
当m<0时,
2m>4,
此时m无解;
由上可得,m的取值范围为0<m≤2,
故选:A.
八.二次函数图象上点的坐标特征(共1小题)
11.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有( )个.
A.2 B.3 C.4 D.5
【解答】解:∵抛物线开口向上,
∴a>0,
∴抛物线与y轴交于点(0,﹣1),
∴c=﹣1,
∵﹣=1,
∴b=﹣2a<0,
∴abc>0,故①正确,
∵y=ax2﹣2ax﹣1,
当x=﹣1时,y>0,
∴a+2a﹣1>0,
∴a>,故②正确,
当m=1时,m(am+b)=a+b,故③错误,
∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,
∴y1>y3,
∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,
∴y3>y2,
∴y2<y3<y1,故④错误,
∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,
当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,
故选:A.
九.抛物线与x轴的交点(共2小题)
12.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
【解答】解:∵y=(x﹣2)2﹣9,
∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
∴x=2时,y取最小值﹣9,①正确.
∵x>2时,y随x增大而增大,
∴y2>y1,②正确.
将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
令(x﹣2)2﹣9=0,
解得x1=﹣1,x2=5,
∴5﹣(﹣1)=6,④正确.
故选:B.
13.(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是( )
A.a≥ B.a> C.0<a< D.0<a≤
【解答】解:把A(﹣2,0)、B(4,0)代入y=ax2+bx+c得,
,
解得,
∴抛物线的解析式为:y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,
设抛物线的顶点为点P,
∴抛物线的顶点P(1,﹣9a),对称轴为x=1,
设C为AB的中点,则C(1,0),
∴CP=|﹣9a|=9a
∵以AB为直径的圆与在x轴下方的抛物线有交点,
∴a>0,CP≥即9a≥3,
∴a≥.
故选:A.
一十.二次函数与不等式(组)(共1小题)
14.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
【解答】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,
∴a>0,b<0,c>0,
∴abc<0,
∴①正确.
∵当x=1时,y<0,
∴a+b+c<0,
∴②错误.
∵抛物线过点(2,0),
∴4a+2b+c=0,
∴b=﹣2a﹣,
∵a+b+c<0,
∴a﹣2a﹣+c<0,
∴2a﹣c>0,
∴③正确.
如图:
设y1=ax2+bx+c,y2=﹣x+c,
由图值,y1>y2时,x<0或x>x1,
故④错误.
故选:C.
一十一.二次函数的应用(共1小题)
15.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2
C.方案3 D.方案1或方案2
【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,
则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,
当x=2时,此时菜园最大面积为8米2;
方案2:当∠BAC=90°时,菜园最大面积=×4×4=8米2;
方案3:半圆的半径=米,
∴此时菜园最大面积==米2>8米2;
故选:C.
一十二.二次函数综合题(共1小题)
16.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥﹣2;
②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.
其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
【解答】解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),
∴线段AB与y轴的交点坐标为(0,﹣2),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;
∵抛物线的顶点在线段AB上运动,开口向上,
∴当x>1时,一定有y随x的增大而增大,故②错误;
若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,
∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,
∴点C的横坐标最大值为3,故③正确;
令y=0,则ax2+bx+c=0,
CD2=(﹣)2﹣4×=,
根据顶点坐标公式,=﹣2,
∴=﹣8,即=8,
∴CD2=×8=,
∵四边形ACDB为平行四边形,
∴CD=AB=1﹣(﹣3)=4,
∴=42=16,
解得a=,故④正确;
综上所述,正确的结论有①③④.
故选:D.
一十三.三角形的面积(共1小题)
17.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
【解答】解:如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,
设AN=a,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴=,
∴=,
∴DE=a,
∴△DEF面积S=×DE×MN
=×a•(6﹣a)
=﹣a2+4a
=﹣(a﹣3)2+6,
∴当a=3时,S有最大值,最大值为6.
故选:A.
一十四.勾股定理(共2小题)
18.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B.3 C.2 D.
【解答】解:在Rt△ABC中,BC=6,AC=8,
∴AB===10,
∵BD=CB=6,
∴AD=AB﹣BC=4,
由作图可知EF垂直平分线段AD,
∴AF=DF=2,
∵∠A=∠A,∠AFE=∠ACB=90°,
∴△AFE∽△ACB,
∴=,
∴=,
∴AE=,
故选:A.
19.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1 B.DC=3 C.AE=5 D.AC=9
【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,
∴∠1=∠2,DC=FD,∠C=∠DFB=90°,
∵DE∥AB,
∴∠2=∠3,
∴∠1=∠3,
∴AE=DE,
∵DE=5,DF=3,
∴AE=5,CD=3,故选项B、C正确;
∴CE==4,
∴AC=AE+EC=5+4=9,故选项D正确;
∵DE∥AB,∠DFB=90°,
∴∠EDF=∠DFB=90°,
∴∠CDE+∠FDB=90°,
∵∠CDE+∠DEC=90°,
∴∠DEC=∠FDB,
∵tan∠DEC=,tan∠FDB=,
∴,
解得BF=,故选项A错误;
故选:A.
一十五.等腰直角三角形(共1小题)
20.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是( )
A.①②④ B.①②③ C.①③④ D.①②③④
【解答】解:如图1中,
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴BD=EC,∠ADB=∠AEC,故①正确,
∵∠ADB+∠ADC=180°,
∴∠AEC+∠ADC=180°,
∴∠DAE+∠DCE=180°,
∴∠DAE=∠DCE=90°,
取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,
∴A,D,C,E四点共圆,
∴∠DAC=∠CED,故②正确,
设CD=m,则BD=CE=2m.DE=m,OA=m,
过点C作CJ⊥DF于点J,
∵tan∠CDF===2,
∴CJ=m,
∵AO⊥DE,CJ⊥DE,
∴AO∥CJ,
∴===,故③正确.
如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,
∴BP=BN,PC=NM,∠PBN=60°,
∴△BPN是等边三角形,
∴BP=PN,
∴PA+PB+PC=AP+PN+MN,
∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,
∴∠BPD=∠CPD=60°,
设PD=t,则BD=AD=t,
∴2+t=t,
∴t=+1,
∴CE=BD=t=3+,故④错误.
故选:B.
一十六.多边形内角与外角(共1小题)
21.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是( )
A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E
【解答】解:在正五边形ABCDE中内角和:180°×3=540°,
∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,
∴D不符合题意;
∵以AB为边向内作正△ABF,
∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,
∵AE=AB,
∴AE=AF,∠EAF=∠FBC=48°,
∴A、B不符合题意;
∴∠F≠∠EAF,
∴C符合题意;
故选:C.
一十七.平行四边形的性质(共1小题)
22.(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
A.2 B.4 C.6 D.8
【解答】解:∵四边形ABCD是平行四边形,
∴CD=AB=12,BC=AD=8,AB∥CD,
∴∠ABM=∠CMB,
∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∴∠CBM=∠CMB,
∴MC=BC=8,
∴DM=CD﹣MC=12﹣8=4,
故选:B.
一十八.平行四边形的判定(共1小题)
23.(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )
A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF
【解答】解:∵D,E分别是AB,BC的中点,
∴DE是△ABC的中位线,
∴DE∥AC,DE=AC,
A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
B、∵DE=EF,
∴DE=DF,
∴AC=DF,
∵AC∥DF,
∴四边形ADFC为平行四边形,故本选项符合题意;
C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
D、∵AD=CF,AD=BD,
∴BD=CF,
由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
故选:B.
一十九.正方形的性质(共1小题)
24.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为( )
A. B. C. D.1
【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,
∵BF平分∠CBG,∠KBH=90°,
∴四边形BHFK是正方形,
∵DE⊥EF,∠EHF=90°,
∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,
∴∠DEA=∠EFH,
∵∠A=∠EHF=90°,
∴△DAE∽△EHF,
∴,
∵正方形ABCD的边长为3,BE=2AE,
∴AE=1,BE=2,
设FH=a,则BH=a,
∴,
解得a=1;
∵FK⊥CB,DC⊥CB,
∴△DCN∽△FKN,
∴,
∵BC=3,BK=1,
∴CK=2,
设CN=b,则NK=2﹣b,
∴,
解得b=,
即CN=,
∵∠A=∠EBM,∠AED=∠BME,
∴△ADE∽△BEM,
∴,
∴,
解得BM=,
∴MN=BC﹣CN﹣BM=3﹣﹣=,
故选:B.
二十.中点四边形(共1小题)
25.(2022•德阳)如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是( )
A.四边形EFGH是矩形
B.四边形EFGH的内角和小于四边形ABCD的内角和
C.四边形EFGH的周长等于四边形ABCD的对角线长度之和
D.四边形EFGH的面积等于四边形ABCD的面积的
【解答】解:A.如图,连接AC,BD,
在四边形ABCD中,
∵点E,F,G,H分别是AB,BC,CD,DA边上的中点,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,故A选项错误;
B.∵四边形EFGH的内角和等于360°,四边形ABCD的内角和等于360°,故B选项错误;
C.∵点E,F,G,H分别是AB,BC,CD,DA边上的中点,
∴EH=BD,FG=BD,
∴EH+FG=BD,
同理:EF+HG=AC,
∴四边形EFGH的周长等于四边形ABCD的对角线长度之和,故C选项正确;
D.四边形EFGH的面积不等于四边形ABCD的面积的,故D选项错误.
故选:C.
二十一.圆周角定理(共1小题)
26.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为( )
A.70° B.65° C.50° D.45°
【解答】解:∵OF⊥BC,
∴∠BFO=90°,
∵∠BOF=65°,
∴∠B=90°﹣65°=25°,
∵弦CD⊥AB,AB为⊙O的直径,
∴=,
∴∠AOD=2∠B=50°.
故选:C.
二十二.圆内接四边形的性质(共1小题)
27.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是( )
A.90° B.100° C.110° D.120°
【解答】解:方法一:连接OD,如图所示,
∵∠ABD=20°,
∴∠AOD=40°,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠OAD+∠ODA+∠AOD=180°,
∴∠OAD=∠ODA=70°,
∵四边形ABCD是圆内接四边形,
∴∠OAD+∠BCD=180°,
∴∠BCD=110°,
故选:C.
方法二:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=20°,
∴∠A=70°,
∵四边形ABCD是圆内接四边形,
∴∠A+∠BCD=180°,
∴∠BCD=110°,
故选:C.
二十三.正多边形和圆(共1小题)
28.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )
A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
【解答】解:如图,连接BD交CF于点M,则点B(2,1),
在Rt△BCM中,BC=4,∠BCM=×120°=60°,
∴CM=BC=2,BM=BC=2,
∴点C的横坐标为﹣(2﹣2)=2﹣2,纵坐标为1+2=3,
∴点C的坐标为(2﹣2,3),
故选:A.
二十四.轴对称-最短路线问题(共1小题)
29.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE+PF的最小值是( )
A.2 B. C.1.5 D.
【解答】解:如图,取AB是中点T,连接PT,FT.
∵四边形ABCD是菱形,
∴CD∥AB,CD=AB,
∵DF=CF,AT=TB,
∴DF=AT,DF∥AT,
∴四边形ADFT是平行四边形,
∴AD=FT=2,
∵四边形ABCD是菱形,AE=DE,AT=TB,
∴E,T关于AC对称,
∴PE=PT,
∴PE+PF=PT+PF,
∵PF+PT≥FT=2,
∴PE+PF≥2,
∴PE+PF的最小值为2.
故选:A.
二十五.旋转的性质(共1小题)
30.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
【解答】解:∵∠B=30°,∠C=90°,
∴∠CAB=180°﹣∠B﹣∠C=60°,
∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,
∴∠C′AB′=∠CAB=60°.
∵点B′恰好落在CA的延长线上,
∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.
故选:B.
二十六.相似三角形的判定与性质(共4小题)
31.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵△EDC旋转得到△HBC,
∴∠EDC=∠HBC,
∵ABCD为正方形,D,B,H在同一直线上,
∴∠HBC=180°﹣45°=135°,
∴∠EDC=135°,故①正确;
∵△EDC旋转得到△HBC,
∴EC=HC,∠ECH=90°,
∴∠HEC=45°,
∴∠FEC=180°﹣45°=135°,
∵∠ECD=∠ECF,
∴△EFC∽△DEC,
∴,
∴EC2=CD•CF,故②正确;
设正方形边长为a,
∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,
∴∠BHC=∠HGB=∠DEC,
∵∠GBH=∠EDC=135°,
∴△GBH∽△EDC,
∴,即,
∵△HEC是等腰直角三角形,
∴,
∵∠GHB=∠FHD,∠GBH=∠HDF=135°,
∴△HBG∽△HDF,
∴,即,解得:EF=3,
∵HG=3,
∴HG=EF,故③正确;
过点E作EM⊥FD交FD于点M,
∴∠EDM=45°,
∵ED=HB=2,
∴,
∵EF=3,
∴,
∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,
∴∠DEC=∠EFC,
∴,故④正确
综上所述:正确结论有4个,
故选:D.
32.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为( )
A. B.3 C.2 D.4
【解答】解:如图,过点A作AH⊥BC于点H.
当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,
点M的运动轨迹是△ECF″的中位线,M′M″=CF″,
∵AB=AC,AH⊥BC,
∴BH=CH,
∵AE∥BC,AE=BC,
∴AE=CH,
∴四边形AHCE是平行四边形,
∵∠AHC=90°,
∴四边形AHCE是矩形,
∴EC⊥BF″,AH=EC,
∵BC=2,S△ABC=2,
∴×2×AH=2,
∴AH=EC=2,
∵∠BEF″=∠ECB=∠ECF″,
∴∠BEC+∠CEF″=90°,
∠CEF″+∠F″=90°,
∴∠BEC=∠F″,
∴△ECB∽△F″CE,
∴EC2=CB•CF″,
∴CF″==6,
∴M′M″=3
故选:B.
33.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
A.9 B.12 C.15 D.18
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,∠A=∠EBF=∠BCD=90°,
∵将矩形ABCD沿直线DE折叠,
∴AD=DF=BC,∠A=∠DFE=90°,
∴∠BFE+∠DFC=∠BFE+∠BEF=90°,
∴∠BEF=∠CFD,
∴△BEF∽△CFD,
∴,
∵CD=3BF,
∴CF=3BE=12,
设BF=x,则CD=3x,DF=BC=x+12,
∵∠C=90°,
∴Rt△CDF中,CD2+CF2=DF2,
∴(3x)2+122=(x+12)2,
解得x=3(舍去0根),
∴AD=DF=3+12=15,
故选:C.
34.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
【解答】解:∵四边形ABCD、四边形BEFG是正方形,
∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
∴△ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∵∠BAG+∠APB=90°,
∴∠BCE+∠APB=90°,
∴∠BCE+∠OPC=90°,
∴∠POC=90°,
∴EC⊥AG,故①正确;
取AC的中点K,如图:
在Rt△AOC中,K为斜边AC上的中点,
∴AK=CK=OK,
在Rt△ABC中,K为斜边AC上的中点,
∴AK=CK=BK,
∴AK=CK=OK=BK,
∴A、B、O、C四点共圆,
∴∠BOA=∠BCA,
∵∠BPO=∠CPA,
∴△OBP∽△CAP,故②正确,
∵∠AOC=∠ADC=90°,
∴∠AOC+∠ADC=180°,
∴A、O、C、D四点共圆,
∵AD=CD,
∴∠AOD=∠DOC=45°,故④正确,
由已知不能证明OB平分∠CBG,故③错误,
故正确的有:①②④,
故选:D.
二十七.解直角三角形(共2小题)
35.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )
A.2 B.3 C. D.2
【解答】解:过D点作DE⊥AB于E,
∵tan∠A==,tan∠ABD==,
∴AE=2DE,BE=3DE,
∴2DE+3DE=5DE=AB,
在Rt△ABC中,tan∠A=,BC=,
∴,
解得AC=,
∴AB=,
∴DE=1,
∴AE=2,
∴AD=,
∴CD=AC﹣AD=,
故选:C.
36.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A.y=3x B.y=﹣x+ C.y=﹣2x+11 D.y=﹣2x+12
【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,
则直线MN为符合条件的直线l,如图,
∵四边形OABC是矩形,
∴OM=BM.
∵B的坐标为(10,4),
∴M(5,2),AB=10,BC=4.
∵四边形ABEF为菱形,
BE=AB=10.
过点E作EG⊥AB于点G,
在Rt△BEG中,
∵tan∠ABE=,
∴,
设EG=4k,则BG=3k,
∴BE==5k,
∴5k=10,
∴k=2,
∴EG=8,BG=6,
∴AG=4.
∴E(4,12).
∵B的坐标为(10,4),AB∥x轴,
∴A(0,4).
∵点N为AE的中点,
∴N(2,8).
设直线l的解析式为y=ax+b,
∴,
解得:,
∴直线l的解析式为y=﹣2x+12,
故选:D.
二十八.简单几何体的三视图(共1小题)
37.(2022•雅安)下列几何体的三种视图都是圆形的是( )
A. B. C. D.
【解答】解:∵A选项的主视图和左视图为长方形,
∴A选项不符合题意;
∵B选项的三种视图都是圆形,
∴B选项符合题意;
∵C选项的主视图和左视图为等腰三角形,
∴C选项不符合题意;
∵D选项主视图和左视图为等腰梯形,
∴D选项不符合题意;
综上,B选项的三种视图都是圆形,
故选:B.
二十九.列表法与树状图法(共1小题)
38.(2022•绵阳)某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环保小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验.甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( )
A. B. C. D.
【解答】解:根据题意画树状图如图所示,
由树状图可知,共有16种等可能的情况,其中甲乙两名同学恰好在同一岗位体验的情况共有4种,
∴这两名同学恰好在同一岗位体验的概率为=.
故选:A.
四川省2022年各地区中考数学真题按题型分层分类汇编-02选择题(基础题): 这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-02选择题(基础题),共47页。
黑龙江省各地区2022年中考数学真题按题型分层分类汇编-03选择题(提升题): 这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-03选择题(提升题),共22页。试卷主要包含了下列图形是黄金矩形的折叠过程等内容,欢迎下载使用。
湖北省各地区2022年中考数学真题按题型分层分类汇编-03选择题(中档题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-03选择题(中档题),共29页。