贵州省各地区2022年中考数学真题按题型难易度分层分类汇编-02选择题(基础题)
展开贵州省各地区2022年中考数学真题按题型难易度分层分类汇编-02选择题(基础题)
一.倒数(共1小题)
1.(2022•黔东南州)下列说法中,正确的是( )
A.2与﹣2互为倒数 B.2与互为相反数
C.0的相反数是0 D.2的绝对值是﹣2
二.科学记数法—表示较大的数(共2小题)
2.(2022•安顺)贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP约为196000000万元,则数据196000000用科学记数法表示为( )
A.196×106 B.19.6×107 C.1.96×108 D.0.196×109
3.(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为( )
A.0.12×104 B.1.2×104 C.1.2×103 D.12×102
三.数学常识(共2小题)
4.(2022•六盘水)全国统一规定的交通事故报警电话号码是( )
A.122 B.110 C.120 D.114
5.(2022•遵义)全国统一规定的交通事故报警电话是( )
A.122 B.110 C.120 D.114
四.实数与数轴(共1小题)
6.(2022•黔东南州)在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是( )
A.x≤﹣1 B.x≤﹣1或x≥2 C.﹣1≤x≤2 D.x≥2
五.估算无理数的大小(共1小题)
7.(2022•遵义)估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
六.代数式求值(共1小题)
8.(2022•六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是( )
A.4 B.8 C.16 D.32
七.同底数幂的除法(共1小题)
9.(2022•黔东南州)下列运算正确的是( )
A.a6÷a2=a3 B.a2+a3=a5
C.﹣2(a+b)=﹣2a+b D.(﹣2a2)2=4a4
八.单项式乘单项式(共1小题)
10.(2022•黔西南州)计算(﹣3x)2•2x正确的是( )
A.6x3 B.12x3 C.18x3 D.﹣12x3
九.完全平方公式(共1小题)
11.(2022•遵义)下列运算结果正确的是( )
A.a3•a4=a12 B.3ab﹣2ab=1
C.(﹣2ab3)2=4a2b6 D.(a﹣b)2=a2﹣b2
一十.二次根式的混合运算(共1小题)
12.(2022•安顺)估计(+)×的值应在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
一十一.解一元一次方程(共1小题)
13.(2022•黔西南州)小明解方程﹣1=的步骤如下:
解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①
去括号,得3x+3﹣1=2x﹣2②
移项,得3x﹣2x=﹣2﹣3+1③
合并同类项,得x=﹣4④
以上解题步骤中,开始出错的一步是( )
A.① B.② C.③ D.④
一十二.由实际问题抽象出一元一次方程(共1小题)
14.(2022•六盘水)我国“DF﹣41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF﹣41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程( )
A.26×340×60x=12000 B.26×340x=12000
C.=12000 D.=12000
一十三.一元一次方程的应用(共1小题)
15.(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )
A.14 B.15 C.16 D.17
一十四.根的判别式(共1小题)
16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是( )
A.有一个实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.没有实数根
一十五.根与系数的关系(共1小题)
17.(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为( )
A.7 B.﹣7 C.6 D.﹣6
一十六.解分式方程(共1小题)
18.(2022•毕节市)小明解分式方程=﹣1的过程如下.
解:去分母,得3=2x﹣(3x+3).①
去括号,得3=2x﹣3x+3.②
移项、合并同类项,得﹣x=6.③
化系数为1,得x=﹣6.④
以上步骤中,开始出错的一步是( )
A.① B.② C.③ D.④
一十七.由实际问题抽象出分式方程(共1小题)
19.(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为( )
A.=2× B.=2×
C.=2× D.=2×
一十八.解一元一次不等式(共1小题)
20.(2022•遵义)关于x的一元一次不等式x﹣3≥0的解集在数轴上表示为( )
A. B.
C. D.
一十九.点的坐标(共1小题)
21.(2022•六盘水)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是( )
A.狐狸 B.猫 C.蜜蜂 D.牛
二十.函数的图象(共1小题)
22.(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是( )
A. B.
C. D.
二十一.动点问题的函数图象(共1小题)
23.(2022•铜仁市)如图,等边△ABC、等边△DEF的边长分别为3和2.开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止.在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为( )
A. B.
C. D.
二十二.一次函数图象与系数的关系(共1小题)
24.(2022•遵义)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k值可能是( )
A.2 B. C. D.﹣4
二十三.一次函数与二元一次方程(组)(共1小题)
25.(2022•贵阳)在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n(a<m<0)的图象如图所示.小星根据图象得到如下结论:
①在一次函数y=mx+n的图象中,y的值随着x值的增大而增大;
②方程组的解为;
③方程mx+n=0的解为x=2;
④当x=0时,ax+b=﹣1.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
二十四.一次函数的应用(共1小题)
26.(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是( )
A.汽车在高速路上行驶了2.5h
B.汽车在高速路上行驶的路程是180km
C.汽车在高速路上行驶的平均速度是72km/h
D.汽车在乡村道路上行驶的平均速度是40km/h
二十五.反比例函数的图象(共1小题)
27.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
二十六.反比例函数的性质(共1小题)
28.(2022•黔西南州)在平面直角坐标系中,反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过的象限是( )
A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四
二十七.反比例函数图象上点的坐标特征(共1小题)
29.(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是( )
A.点P B.点Q C.点M D.点N
二十八.二次函数图象与系数的关系(共1小题)
30.(2022•毕节市)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二十九.展开图折叠成几何体(共1小题)
31.(2022•六盘水)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是( )
A.① B.② C.③ D.④
三十.截一个几何体(共1小题)
32.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )
A. B.
C. D.
三十一.平行线的性质(共1小题)
33.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是( )
A.137° B.53° C.47° D.43°
三十二.三角形三边关系(共1小题)
34.(2022•毕节市)如果一个三角形的两边长分别为3,7,则第三边的长可以是( )
A.3 B.4 C.7 D.10
三十三.勾股定理(共1小题)
35.(2022•遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=30°,则点B到OC的距离为( )
A. B. C.1 D.2
三十四.三角形中位线定理(共1小题)
36.(2022•安顺)如图,在△ABC中,AC=2,∠ACB=120°,D是边AB的中点,E是边BC上一点,若DE平分△ABC的周长,则DE的长为( )
A. B. C. D.
三十五.菱形的性质(共1小题)
37.(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是( )
A.40° B.60° C.80° D.100°
三十六.正方形的性质(共1小题)
38.(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )
A.4 B.8 C.12 D.16
三十七.圆周角定理(共2小题)
39.(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是( )
A.5 B.5 C.5 D.5
40.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为( )
A.30° B.40° C.50° D.60°
三十八.扇形面积的计算(共1小题)
41.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为( )
A.﹣ B.﹣ C.﹣ D.﹣
三十九.翻折变换(折叠问题)(共1小题)
42.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是( )
A.3 B. C. D.
四十.中心对称(共1小题)
43.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为( )
A.﹣3 B.﹣1 C.1 D.3
四十一.相似三角形的判定与性质(共1小题)
44.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1: B.1:2 C.1:3 D.1:4
四十二.解直角三角形(共1小题)
45.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为( )
A. B. C. D.
四十三.解直角三角形的应用-坡度坡角问题(共1小题)
46.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为( )
A.10m B.10m C.5m D.5m
四十四.由三视图判断几何体(共1小题)
47.(2022•黔东南州)一个物体的三视图如图所示,则该物体的形状是( )
A.圆锥 B.圆柱 C.四棱柱 D.四棱锥
四十五.扇形统计图(共1小题)
48.(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是( )
作业时间频数分布表
组别
作业时间(单位:分钟)
频数
A
60<t≤70
8
B
70<t≤80
17
C
80<t≤90
m
D
t>90
5
A.调查的样本容量为50
B.频数分布表中m的值为20
C.若该校有1000名学生,作业完成的时间超过90分钟的约100人
D.在扇形统计图中B组所对的圆心角是144°
四十六.众数(共1小题)
49.(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )
A.5,10 B.5,9 C.6,8 D.7,8
四十七.可能性的大小(共1小题)
50.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是( )
A.小星抽到数字1的可能性最小
B.小星抽到数字2的可能性最大
C.小星抽到数字3的可能性最大
D.小星抽到每个数的可能性相同
四十八.概率公式(共1小题)
51.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )
A.红球 B.黄球 C.白球 D.蓝球
贵州省各地区2022年中考数学真题按题型难易度分层分类汇编-02选择题(基础题)
参考答案与试题解析
一.倒数(共1小题)
1.(2022•黔东南州)下列说法中,正确的是( )
A.2与﹣2互为倒数 B.2与互为相反数
C.0的相反数是0 D.2的绝对值是﹣2
【解答】解:A选项,2与﹣2互为相反数,故该选项不符合题意;
B选项,2与互为倒数,故该选项不符合题意;
C选项,0的相反数是0,故该选项符合题意;
D选项,2的绝对值是2,故该选项不符合题意;
故选:C.
二.科学记数法—表示较大的数(共2小题)
2.(2022•安顺)贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP约为196000000万元,则数据196000000用科学记数法表示为( )
A.196×106 B.19.6×107 C.1.96×108 D.0.196×109
【解答】解:196000000=1.96×108,
故选:C.
3.(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为( )
A.0.12×104 B.1.2×104 C.1.2×103 D.12×102
【解答】解:1200=1.2×103.
故选:C.
三.数学常识(共2小题)
4.(2022•六盘水)全国统一规定的交通事故报警电话号码是( )
A.122 B.110 C.120 D.114
【解答】解:全国统一规定的交通事故报警电话号码是122,
故选:A.
5.(2022•遵义)全国统一规定的交通事故报警电话是( )
A.122 B.110 C.120 D.114
【解答】解:全国统一规定的交通事故报警电话号码是122,A符合题意;B、C、D选项与题意不符.
故选:A.
四.实数与数轴(共1小题)
6.(2022•黔东南州)在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是( )
A.x≤﹣1 B.x≤﹣1或x≥2 C.﹣1≤x≤2 D.x≥2
【解答】解:当x<﹣1时,x+1<0,x﹣2<0,
|x+1|+|x﹣2|
=﹣(x+1)﹣(x﹣2)
=﹣x﹣1﹣x+2
=﹣2x+1>3;
当x>2时,x+1>0,x﹣2>0,
|x+1|+|x﹣2|
=(x+1)+(x﹣2)
=x+1+x﹣2
=2x﹣1>3;
当﹣1≤x≤2时,x+1≥0,x﹣2≤0,
|x+1|+|x﹣2|
=(x+1)﹣(x﹣2)
=x+1﹣x+2=3;
综上所述,当﹣1≤x≤2时,|x+1|+|x﹣2|取得最小值,
所以当|x+1|+|x﹣2|取得最小值时,x的取值范围是﹣1≤x≤2.
故选C.
五.估算无理数的大小(共1小题)
7.(2022•遵义)估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【解答】解:∵16<21<25,
∴4<<5,
则的值在4和5之间,
故选:C.
六.代数式求值(共1小题)
8.(2022•六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是( )
A.4 B.8 C.16 D.32
【解答】解:∵(x+y)4=x4+4x3y+6x2y2+4xy3+y4,
∴a1+a2+a3+a4+a5
=1+4+6+4+1
=16,
故选:C.
七.同底数幂的除法(共1小题)
9.(2022•黔东南州)下列运算正确的是( )
A.a6÷a2=a3 B.a2+a3=a5
C.﹣2(a+b)=﹣2a+b D.(﹣2a2)2=4a4
【解答】解:A、a6÷a2=a4,故A选项不符合题意;
B、a2+a3≠a5,故B选项不符合题意;
C、﹣2(a+b)=﹣2a﹣2b,故C选项不符合题意;
D、(﹣2a2)2=4a4,故D选项符合题意;
故选:D.
八.单项式乘单项式(共1小题)
10.(2022•黔西南州)计算(﹣3x)2•2x正确的是( )
A.6x3 B.12x3 C.18x3 D.﹣12x3
【解答】解:(﹣3x)2•2x
=9x2•2x
=18x3.
故选:C.
九.完全平方公式(共1小题)
11.(2022•遵义)下列运算结果正确的是( )
A.a3•a4=a12 B.3ab﹣2ab=1
C.(﹣2ab3)2=4a2b6 D.(a﹣b)2=a2﹣b2
【解答】解:A.a3•a4=a3+4=a7,因此选项A不符合题意;
B.3ab﹣2ab=ab,因此选项B不符合题意;
C.(﹣2ab3)2=4a2b6,因此选项C符合题意;
D.(a﹣b)2=a2﹣2ab+b2,因此选项D不符合题意;
故选:C.
一十.二次根式的混合运算(共1小题)
12.(2022•安顺)估计(+)×的值应在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
【解答】解:原式=2+,
∵3<<4,
∴5<2+<6,
故选:B.
一十一.解一元一次方程(共1小题)
13.(2022•黔西南州)小明解方程﹣1=的步骤如下:
解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①
去括号,得3x+3﹣1=2x﹣2②
移项,得3x﹣2x=﹣2﹣3+1③
合并同类项,得x=﹣4④
以上解题步骤中,开始出错的一步是( )
A.① B.② C.③ D.④
【解答】解:方程两边同乘6应为:3(x+1)﹣6=2(x﹣2),
∴出错的步骤为:①,
故选:A.
一十二.由实际问题抽象出一元一次方程(共1小题)
14.(2022•六盘水)我国“DF﹣41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF﹣41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程( )
A.26×340×60x=12000 B.26×340x=12000
C.=12000 D.=12000
【解答】解:根据题意得:=12000,
故选:D.
一十三.一元一次方程的应用(共1小题)
15.(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )
A.14 B.15 C.16 D.17
【解答】解:设小红答对的个数为x个,
由题意得5x﹣(20﹣x)=70,
解得x=15,
故选:B.
一十四.根的判别式(共1小题)
16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是( )
A.有一个实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.没有实数根
【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,
整理得:x2﹣2x﹣1﹣k2=0,
∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,
∴方程有两个不相等的实数根.
故选:B.
一十五.根与系数的关系(共1小题)
17.(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为( )
A.7 B.﹣7 C.6 D.﹣6
【解答】解:∵关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,
∴x1+x2=2,x1•x2=﹣a,
∵x1=﹣1,
∴x2=3,x1•x2=﹣3=﹣a,
∴a=3,
∴原式=3﹣(﹣1)2﹣32
=3﹣1﹣9
=﹣7.
故选:B.
一十六.解分式方程(共1小题)
18.(2022•毕节市)小明解分式方程=﹣1的过程如下.
解:去分母,得3=2x﹣(3x+3).①
去括号,得3=2x﹣3x+3.②
移项、合并同类项,得﹣x=6.③
化系数为1,得x=﹣6.④
以上步骤中,开始出错的一步是( )
A.① B.② C.③ D.④
【解答】解:去分母得:3=2x﹣(3x+3)①,
去括号得:3=2x﹣3x﹣3②,
∴开始出错的一步是②,
故选:B.
一十七.由实际问题抽象出分式方程(共1小题)
19.(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为( )
A.=2× B.=2×
C.=2× D.=2×
【解答】解:根据题意得:=2×.
故选:D.
一十八.解一元一次不等式(共1小题)
20.(2022•遵义)关于x的一元一次不等式x﹣3≥0的解集在数轴上表示为( )
A. B.
C. D.
【解答】解:x﹣3≥0,
x≥3,
在数轴上表示为:,
故选:B.
一十九.点的坐标(共1小题)
21.(2022•六盘水)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是( )
A.狐狸 B.猫 C.蜜蜂 D.牛
【解答】解:由题意知,咚咚﹣咚咚对应(2,2),咚﹣咚对应(1,1),咚咚咚﹣咚对应(3,1).
∴咚咚﹣咚对应(2,1),表示C;咚咚咚﹣咚咚对应(3,2),表示A;咚﹣咚咚咚对应(1,3),表示T.
∴此时,表示的动物是猫.
故选:B.
二十.函数的图象(共1小题)
22.(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是( )
A. B.
C. D.
【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;
t从5到气温为20℃时,极差不变;当气温从20℃到28℃时极差达到最大值.直到24时都不变.
只有A符合.
故选:A.
二十一.动点问题的函数图象(共1小题)
23.(2022•铜仁市)如图,等边△ABC、等边△DEF的边长分别为3和2.开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止.在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为( )
A. B.
C. D.
【解答】解:如图所示,当E和B重合时,AD=AB﹣DB=3﹣2=1,
∴当△DEF移动的距离为0≤x≤1时,△DEF在△ABC内,y=S△DEF==,
当E在B的右边时,如图所示,设移动过程中DF与CB交于点N,过点N作NM垂直于AE,垂足为M,
根据题意得AD=x,AB=3,
∴DB=AB﹣AD=3﹣x,
∵∠NDB=60°,∠NBD=60°,
∴△NDB是等边三角形,
∴DN=DB=NB=3﹣x,
∵NM⊥DB,
∴,
∵NM2+DM2=DN2,
∴,
∴,
∴,
∴当1≤x≤3时,y是一个关于x的二次函数,且开口向上,
故选:C.
二十二.一次函数图象与系数的关系(共1小题)
24.(2022•遵义)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k值可能是( )
A.2 B. C. D.﹣4
【解答】解:∵一次函数y=(k+3)x﹣1的函数值y随着x的增大而减小,
∴k+3<0,
解得k<﹣3.
所以k的值可以是﹣4,
故选:D.
二十三.一次函数与二元一次方程(组)(共1小题)
25.(2022•贵阳)在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n(a<m<0)的图象如图所示.小星根据图象得到如下结论:
①在一次函数y=mx+n的图象中,y的值随着x值的增大而增大;
②方程组的解为;
③方程mx+n=0的解为x=2;
④当x=0时,ax+b=﹣1.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
【解答】解:①由函数图象可知,直线y=mx+n从左至右呈下降趋势,所以y的值随着x值的增大而减小,故①错误;
②由函数图象可知,一次函数y=ax+b与y=mx+n(a<m<0)的图象交点坐标为(﹣3,2),所以方程组的解为,故②正确;
③由函数图象可知,直线y=mx+n与x轴的交点坐标为(2,0),所以方程mx+n=0的解为x=2,故③正确;
④由函数图象可知,直线y=ax+b过点(0,﹣2),所以当x=0时,ax+b=﹣2,故④错误;
故选:B.
二十四.一次函数的应用(共1小题)
26.(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是( )
A.汽车在高速路上行驶了2.5h
B.汽车在高速路上行驶的路程是180km
C.汽车在高速路上行驶的平均速度是72km/h
D.汽车在乡村道路上行驶的平均速度是40km/h
【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,
∴汽车下高速公路的时间是2.5h,
∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;
由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;
汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;
汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;
故选:D.
二十五.反比例函数的图象(共1小题)
27.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,
∴a>0,
∵该抛物线对称轴位于y轴的右侧,
∴a、b异号,即b<0.
∵抛物线交y轴的负半轴,
∴c<0,
∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=(c≠0)在二、四象限.
故选:A.
二十六.反比例函数的性质(共1小题)
28.(2022•黔西南州)在平面直角坐标系中,反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过的象限是( )
A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四
【解答】解:由图可知:k<0,
∴一次函数y=kx+2的图象经过的象限是一、二、四.
故选:B.
二十七.反比例函数图象上点的坐标特征(共1小题)
29.(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是( )
A.点P B.点Q C.点M D.点N
【解答】解:如图,反比例函数y=的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,
通过观察发现,点P、Q、N可能在图象上,点M不在图象上,
故选:C.
二十八.二次函数图象与系数的关系(共1小题)
30.(2022•毕节市)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵图象开口向下,
∴a<0,
∵对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵图象与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,
∴①说法错误,
∵﹣=1,
∴2a=﹣b,
∴2a+b=0,
∴②说法错误,
由图象可知点(﹣1,0)的对称点为(3,0),
∵当x=﹣1时,y<0,
∴当x=3时,y<0,
∴9a+3b+c<0,
∴③说法错误,
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
∴b2>4ac,
∴④说法正确;
当x=﹣1时,y<0,
∴a﹣b+c<0,
∴a+c<b,
∴⑤说法正确,
∴正确的为④⑤,
故选:B.
二十九.展开图折叠成几何体(共1小题)
31.(2022•六盘水)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是( )
A.① B.② C.③ D.④
【解答】解:如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是①,
故选:A.
三十.截一个几何体(共1小题)
32.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )
A. B.
C. D.
【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,
故选:B.
三十一.平行线的性质(共1小题)
33.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是( )
A.137° B.53° C.47° D.43°
【解答】解:∵a∥b,∠1=43°,
∴∠2=∠1=43°.
故选:D.
三十二.三角形三边关系(共1小题)
34.(2022•毕节市)如果一个三角形的两边长分别为3,7,则第三边的长可以是( )
A.3 B.4 C.7 D.10
【解答】解:设第三边为x,则4<x<10,
所以符合条件的整数为7,
故选:C.
三十三.勾股定理(共1小题)
35.(2022•遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=30°,则点B到OC的距离为( )
A. B. C.1 D.2
【解答】解:作BH⊥OC于H,
∵∠AOB=30°,∠A=90°,
∴OB=2AB=2,
在Rt△OBC中,由勾股定理得,
OC==,
∵∠CBO=∠BHC=90°,
∴∠CBH=∠BOC,
∴cos∠BOC=cos∠CBH,
∴,
∴,
∴BH=,
故选:B.
三十四.三角形中位线定理(共1小题)
36.(2022•安顺)如图,在△ABC中,AC=2,∠ACB=120°,D是边AB的中点,E是边BC上一点,若DE平分△ABC的周长,则DE的长为( )
A. B. C. D.
【解答】解:延长BC至F,使CF=CA,连接AF,
∵∠ACB=120°,
∴∠ACF=60°,
∴△ACF为等边三角形,
∴AF=AC=2,
∵DE平分△ABC的周长,
∴BE=CE+AC,
∴BE=CE+CF=EF,
∵BD=DA,
∴DE=AF=,
故选:C.
三十五.菱形的性质(共1小题)
37.(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是( )
A.40° B.60° C.80° D.100°
【解答】解:∵菱形的对边平行,
∴由两直线平行,内错角相等可得∠1=80°.
故选:C.
三十六.正方形的性质(共1小题)
38.(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )
A.4 B.8 C.12 D.16
【解答】解:由题意可得,
小正方形的边长为3﹣1=2,
∴小正方形的周长为2×4=8,
故选:B.
三十七.圆周角定理(共2小题)
39.(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是( )
A.5 B.5 C.5 D.5
【解答】解:连接OE,
由已知可得,OE=OB=BD=5,
∵∠ABC=60°,
∴△BOE是等边三角形,
∴BE=OB=5,
故选:A.
40.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为( )
A.30° B.40° C.50° D.60°
【解答】解:∵OA,OB是⊙O的两条半径,点C在⊙O上,∠AOB=80°,
∴∠C==40°.
故选:B.
三十八.扇形面积的计算(共1小题)
41.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为( )
A.﹣ B.﹣ C.﹣ D.﹣
【解答】解:以OD为半径作弧DN,
∵四边形ABCD是正方形,
∴OB=OD=OC,∠DOC=90°,
∵∠EOB=∠FOD,
∴S扇形BOM=S扇形DON,
∴S阴影=S扇形DOC﹣S△DOC=﹣×1×1=﹣,
故选:B.
三十九.翻折变换(折叠问题)(共1小题)
42.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是( )
A.3 B. C. D.
【解答】解:连接BF,交AE于O点,
∵将△ABE沿AE折叠得到△AFE,
∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,
∵点E为BC的中点,
∴BE=CE=EF=3,
∴∠EFC=∠ECF,
∵∠BEF=∠ECF+∠EFC,
∴∠AEB=∠ECF,
∴AE∥CF,
∴∠BFC=∠BOE=90°,
在Rt△ABE中,由勾股定理得,AE==,
∴BO==,
∴BF=2BO=,
在Rt△BCF中,由勾股定理得,
CF===,
故选:D.
四十.中心对称(共1小题)
43.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为( )
A.﹣3 B.﹣1 C.1 D.3
【解答】解:∵点A(a,1)与点B(﹣2,b)关于原点成中心对称,
∴a=2,b=﹣1,
∴a+b=1,
故选:C.
四十一.相似三角形的判定与性质(共1小题)
44.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1: B.1:2 C.1:3 D.1:4
【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴==,
故选:B.
四十二.解直角三角形(共1小题)
45.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为( )
A. B. C. D.
【解答】解连接AO,BO,
∵PA、PB分别与⊙O相切于点A、B,
∴∠PAO=∠PBO=90°,PA=PB=8,
∵DC=12,
∴AO=6,
∴OP=10,
在Rt△PAO和Rt△PBO中,
,
∴Rt△PAO≌Rt△PBO(HL),
∴∠AOP=∠BOP,
∴,
∴∠ADC=∠BDC,
∵∠AOC=2∠ADC,
∴∠ADB=∠AOC,
∴sin∠ADB=sin∠AOC==.
故选:A.
四十三.解直角三角形的应用-坡度坡角问题(共1小题)
46.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为( )
A.10m B.10m C.5m D.5m
【解答】解:∵坡面AB的坡度为==1:,
∴AC=5m,
∴AB==10m.
故选:A.
四十四.由三视图判断几何体(共1小题)
47.(2022•黔东南州)一个物体的三视图如图所示,则该物体的形状是( )
A.圆锥 B.圆柱 C.四棱柱 D.四棱锥
【解答】解:根据主视图和左视图都是长方形,判定该几何体是个柱体,
∵俯视图是个圆,
∴判定该几何体是个圆柱.
故选:B.
四十五.扇形统计图(共1小题)
48.(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是( )
作业时间频数分布表
组别
作业时间(单位:分钟)
频数
A
60<t≤70
8
B
70<t≤80
17
C
80<t≤90
m
D
t>90
5
A.调查的样本容量为50
B.频数分布表中m的值为20
C.若该校有1000名学生,作业完成的时间超过90分钟的约100人
D.在扇形统计图中B组所对的圆心角是144°
【解答】解:A、调查的样本容量=5÷10%=50,故选项A不符合题意;
B、m=50﹣8﹣17﹣5=20,故选项B不符合题意;
C、该校有1000名学生,作业完成的时间超过90分钟的人数≈1000×10%=100人,故选项C不符合题意;
D、在扇形统计图中B组所对的圆心角=360°××100%=122.4°,故选项D符合题意;
故选:D.
四十六.众数(共1小题)
49.(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )
A.5,10 B.5,9 C.6,8 D.7,8
【解答】解:数据5,5,6,7,8,9,10的众数为5,中位数为7,
若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉,
所以去掉可能是6,8,
故选:C.
四十七.可能性的大小(共1小题)
50.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是( )
A.小星抽到数字1的可能性最小
B.小星抽到数字2的可能性最大
C.小星抽到数字3的可能性最大
D.小星抽到每个数的可能性相同
【解答】解:∵3张同样的纸条上分别写有1,2,3,
∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,
∴小星抽到每个数的可能性相同;
故选:D.
四十八.概率公式(共1小题)
51.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )
A.红球 B.黄球 C.白球 D.蓝球
【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,
因为红球的个数最多,所以摸到红球的概率最大,
摸到红球的概率是:,
故选:A.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)02选择题基础题①(含解析): 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)02选择题基础题①(含解析),共20页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题②,共19页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题①: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-02选择题基础题①,共20页。