湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
展开湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
一.二次函数综合题(共5小题)
1.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.
例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH=1.
【基础训练】
(1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程: , .
【技能训练】
(2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;
【能力提升】
(3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;
【拓展升华】
(4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.
如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.
2.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.
3.(2022•宜昌)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
(1)填空:a= ,b= ;
(2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;
(3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.
①当m=﹣3时,直接写出n的取值范围;
②求m的取值范围.
4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
5.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.
(1)直接写出A,B两点的坐标;
(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;
(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).
二.三角形综合题(共2小题)
6.(2022•鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.
(1)请直接写出点B的坐标;
(2)若动点P满足∠POB=45°,求此时点P的坐标;
(3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A′,当PA′⊥OB时,求此时点P的坐标;
(4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.
7.(2022•湖北)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.
(1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
①如图1,若∠B=45°,m=5,则n= ,S= ;
②如图2,若∠B=60°,m=4,则n= ,S= ;
(2)如图3,当∠ACB=∠EDF=90°时,探究S与m,n的数量关系,并说明理由;
(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.
三.四边形综合题(共1小题)
8.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a﹣b)2=a2﹣2ab+b2
公式④:(a+b)2=a2+2ab+b2
图1对应公式 ,图2对应公式 ,图3对应公式 ,图4对应公式 .
(2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
(3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
①若E为边AC的中点,则的值为 ;
②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.
四.圆的综合题(共1小题)
9.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
(1)求证:DE是半圆O的切线:
(2)当点E落在BD上时,求x的值;
(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.
湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
参考答案与试题解析
一.二次函数综合题(共5小题)
1.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.
例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH=1.
【基础训练】
(1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程: (0,) , y=﹣ .
【技能训练】
(2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;
【能力提升】
(3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;
【拓展升华】
(4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.
如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.
【解答】解:(1)∵a=2,
∴=,
故答案为:(0,),y=﹣;
(2)∵a=,
∴﹣=﹣2,
∴准线为:y=﹣2,
∴点P的纵坐标为:4,
∴=4,
∴x=±4,
∴P(4,2)或(﹣4,2);
(3)如图,
作AG⊥l于G,作BK⊥l于K,
∴AG=AF=4,BK=BF,FH=,
∵BK∥FH∥AG,
∴△CBK∽△CFH,△CBK∽△CAG,
∴,,
∴==,,
∴a=;
(4)设点M(m,m2),
∵=,
∴=2,
∴=2,
∴m1=﹣2,m2=2(舍去),
∴M(﹣2,1),
∵E为线段HF的黄金分割点,
∴EH==﹣1或EH=2﹣(﹣1)=3﹣,
当EH=﹣1时,S△HME===﹣1,
当EH=3﹣时,S△HME=3﹣,
∴△HME的面积是﹣1或3﹣.
2.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.
【解答】解:(1)由题意得,
,
∴,
∴y=x2+x﹣3;
(2)①如图1,
设直线PC交x轴于E,
∵PD∥OC,
∴∠OCE=∠CPD=45°,
∵∠COE=90°,
∴∠CEO=90°﹣∠ECO=45°,
∴∠CEO=∠OCE,
∴OE=OC=3,
∴点E(3,0),
∴直线PC的解析式为:y=x﹣3,
由x2+x﹣3=x﹣3得,
∴x1=﹣,x2=0(舍去),
当x=﹣时,y=﹣﹣3=﹣,
∴P(﹣,﹣);
②如图2,
设点P(m,m2+m﹣3),四边形PECE′的周长记作l,
点P在第三象限时,作EF⊥y轴于F,
∵点E与E′关于PC对称,
∴∠ECP=∠E′PC,CE=CE′,
∵PE∥y轴,
∴∠EPC=∠PCE′,
∴∠ECP=∠EPC,
∴PE=CE,
∴PE=CE′,
∴四边形PECE′为平行四边形,
∴▱PECE′为菱形,
∴CE=PE,
∵EF∥OA,
∴,
∴,
∴CE=﹣m,
∵PE=﹣(﹣)﹣(+﹣3)=﹣﹣3m,
∴﹣=﹣m2﹣3m,
∴m1=0(舍去),m2=﹣,
∴CE=,
∴l=4CE=4×=,
当点P在第二象限时,
同理可得:
﹣m=+3m,
∴m3=0(舍去),m4=﹣,
∴l=4×=,
综上所述:四边形PECE′的周长为:或.
3.(2022•宜昌)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
(1)填空:a= ,b= ﹣ ;
(2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;
(3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.
①当m=﹣3时,直接写出n的取值范围;
②求m的取值范围.
【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,
∴,
解得,
故答案为:,﹣;
(2)设直线BC的解析式为y=dx+e,
∵B(4,0),C(0,﹣2),
∴,
解得,
∴直线BC的解析式为y=x﹣2,
∵直线BC平移得到直线l,直线l与y轴交于点E(0,n),
∴直线l的解析式为y=x+n,
∵双曲线y=经过点M(m+1,m+3),
∴k=(m+1)(m+3),
∴y=,
∵直线l与双曲线y=有且只有一个交点,
联立方程组,
整理得x2+2nx﹣2m2﹣8m﹣6=0,
∴Δ=0,即4n2﹣4(﹣2m2﹣8m﹣6)=0,
∴n2+2m2+8m+6=0,
∴n2=﹣2m2﹣8m﹣6=﹣2(m+2)2+2,
∵M点在第二象限,
∴m+1<0,m+3>0,
∴﹣3<m<﹣1,
∴当m=﹣2时,n2可以取得最大值2;
(3)如图1,当直线l与抛物线有交点时,联立方程组,
整理得,x2﹣4x﹣4﹣2n=0,
∵Δ≥0,即8n+16≥0,
∴n≥﹣4,
当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);
①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),
如图2,当直线l经过点P(2,﹣3)时,此时P点与F点重合,
∴n=﹣4时,直线l与四边形MNPQ、抛物线都有交点,且满足直线l与矩形MNPQ的交点的纵坐标都不大于与抛物线的交点的纵坐标;
如图3,当直线l经过点A时,n=,
当直线l经过点M时,如图4,n=1,
∴≤n≤1,
综上所述:n的取值范围为:≤n≤1或n=﹣4;
②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,直线l与四边形MNPQ、抛物线同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都小于它与抛物线的交点的纵坐标,
∴m+3=(m+1)﹣4,
解得m=﹣13;
如图5,当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,存在直线l(即经过此时点M的直线l)与四边形MNPQ、平行同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线的交点的纵坐标,
∴(m+1)2﹣(m+1)﹣2=m+3,
解得m=(舍)或m=,
综上所述:m的取值范围为﹣13≤m≤.
4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),
∴A(﹣3,0),
∴OA=OC=3,
∴C(0,3),
∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),
把(0,3)代入抛物线的解析式,得a=﹣1,
∴抛物线的解析式为y=﹣x2﹣2x+3;
(2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),
S=S△PAO+S△POC+S△OBC,
=×3×(﹣m2﹣2m+3)××3×(﹣m)+×1×3
=(﹣m2﹣3m+4)
=﹣(m+)2+,
∵﹣<0,
∴当m=﹣时,S的值最大,最大值为,此时P(﹣,);
(3)存在,理由如下:
如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);
如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),
由题意,,
解得,消去n得,3t2+5t﹣10=0,
解得t=,
∴P(,),N(,0)或P′(,),N′(,0).
综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
5.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.
(1)直接写出A,B两点的坐标;
(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;
(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).
【解答】解:(1)令y=0,得x2﹣2x﹣3=0,
解得x=3或﹣1,
∴A(﹣1,0),B(3,0);
(2)∵OP=OA=1,
∴P(0,1),
∴直线AC的解析式为y=x+1.
①若点D在AC的下方时,
过点B作AC的平行线与抛物线交点即为D1.
∵B(3,0),BD1∥AC,
∴直线BD1的解析式为y=x﹣3,
由,解得或,
∴D1(0,﹣3),
∴D1的横坐标为0.
②若点D在AC的上方时,点D1关于点P的对称点G(0,5),
过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.
直线l的解析式为y=x+5,
由,可得x2﹣3x﹣8=0,
解得x=或,
∴D2,D3的横坐标为,,
综上所述,满足条件的点D的横坐标为0,,.
(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,
由,可得x2﹣(2+k)x﹣3﹣b=0,
设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,
∴xA•xC=xB•xE=﹣3﹣b
∵xA=﹣1,
∴xC=3+b,
∴m=3+b,
∵xB=3,
∴xE=﹣1﹣,
∴n=﹣1﹣,
设直线CE的解析式为y=px+q,
同法可得mn=﹣3﹣q
∴q=﹣mn﹣3,
∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,
∴OF=b2+2b,
∴=b+1=(m﹣3)+1=m.
二.三角形综合题(共2小题)
6.(2022•鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.
(1)请直接写出点B的坐标;
(2)若动点P满足∠POB=45°,求此时点P的坐标;
(3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A′,当PA′⊥OB时,求此时点P的坐标;
(4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.
【解答】解:(1)如图1中,在Rt△AOB中,∠OAB=90°,OA=6,OB=10,
∴AB===8,
∴B(8,6);
(2)如图1中,过点P作PH⊥OB于点H.
∵∠POH=45°,
∴PH=OH,
设PH=OH=x,
∵∠B=∠B,∠BHP=∠BAO=90°,
∴△BHP∽△BAO,
∴==,
∴==,
∴BH=x,PB=x,
∴x+x=10,
∴x=,
∴PB=×=,
∴PA=AB﹣PB=8﹣=,
∴P(,6);
(3)如图2中,设PA′交OB于点T.
∵∠OAB=90°,OE=EB,
∴EA=EO=EB=5,
∴∠EAB=∠B,
由翻折的性质可知∠EAB=∠A′,
∴∠A′=∠B,
∵A′P⊥OB,
∴∠ETA′=∠BAO=90°,
∴△A′TE∽△BAO,
∴=,
∴=,
∴ET=3,BT=5﹣3=2,
∵cosB==,
∴=,
∴PB=,
∴AP=AB=PB=8﹣=,
∴P(,6);
(4)如图3中,以AF为边向右作等边△AFK,连接KG,延长KG交x轴于点R,过点K作KJ⊥AF于点J.KQ⊥OR于点Q,过点O作OW⊥KR于W.
∵∠AFK=∠PFG=60°,
∴∠AFP=∠KFG,
∵FA=FK,FP=FG,
∴△AFP≌△KFG(SAS),
∴∠PAF=∠GKF=90°,
∴点G在直线KR上运动,当点G与W重合时,OG的值最小,
∵KJ⊥OA,KQ⊥OR,
∴∠KJO=∠JOQ=∠OQK=90°,
∴四边形JOQK是矩形,
∴OJ=KQ,JK=OQ,
∵KA=KF,KJ⊥AF,
∴AJ=JF=1,KJ=,
∴KQ=OJ=5,
∵∠KRQ=360°﹣90°﹣90°﹣120°=60°,
∴QR=KQ=,
∴OR=+=,
∴OW=OR•sin60°=4,
∴OG的最小值为4,
∵OF=OW=4,∠FOW=60°,
∴△FOW是等边三角形,
∴FW=4,即FG=4,
∴线段FP扫过的面积==.
7.(2022•湖北)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.
(1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
①如图1,若∠B=45°,m=5,则n= 5 ,S= 25 ;
②如图2,若∠B=60°,m=4,则n= 4 ,S= 8 ;
(2)如图3,当∠ACB=∠EDF=90°时,探究S与m,n的数量关系,并说明理由;
(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.
【解答】解:(1)①如图1中,∵∠ACB=90°,∠B=45°,
∴CA=CB,
∵CD平分∠ACB,
∴AD=DB=5,
∵DE⊥AC,DF⊥BC,∠A=∠B=45°,
∴△ADE,△BDF都是等腰直角三角形,
∴BF=DF=5,AE=DE=5,
∴S=×5×5+×5×5=25,
故答案为:5,25;
②如图2中,
在Rt△ADE中,AD=4,∠A=90°﹣∠B=30°,
∴DE=AD=2,AE=DE=6,
∵DE⊥AC,DF⊥BC,CD平分∠ACB,
∴DE=DF=2,
∴BF=2,BD=2BF=4,
∴n=4,
∴S=×2×6+×2×2=8,
故答案为:4,8;
(2)如图3中,过点D作DM⊥AC于点M,DN⊥BC于点N.
∵DM⊥AC,DN⊥BC,CD平分∠ACB,
∴DM=DN,
∵∠DMC=∠DNC=∠MCN=90°,
∴四边形ABCD是矩形,
∴DM=DN,
∴四边形DMCN是正方形,
∴∠MDN=∠EDF=90°,
∴∠MDE=∠NDF,
∵∠DME=∠DNF,
∴△DME≌△DNF(ASA),
∴S=S△ADE+S△BDF=S△ADM+S△BDN,
把△BDN绕点D逆时针旋转90°得到右边△ADH,∠ADH=90°,AD=m,DH=n,
∴S=mn;
(3)如图4中,过点D作DM⊥AC于点M,DN⊥BC于点N.
∵DM⊥AC,DN⊥BC,CD平分∠ACB,
∴DM=DN,
∵∠DMC=∠DNC=90°,
∴∠MDN=180°﹣∠ACB=120°,
∴∠EDF=∠MDN=120°,
∴∠EDM=∠FDN,
∵∠DME=∠DNF=90°,
∴△DME≌△DNF(AAS),
∴S=S△ADE+S△BDF=S△ADM+S△BDN,
把△ADM绕点顺时针旋转120°得到△DNT,∠BDT=60°,DT=6,DB=4,
过点D作DN⊥BT于点N,
∴BH=BD×sin60°=4×=2,
∴S=S△BDT=×6×2=6.
三.四边形综合题(共1小题)
8.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a﹣b)2=a2﹣2ab+b2
公式④:(a+b)2=a2+2ab+b2
图1对应公式 ① ,图2对应公式 ② ,图3对应公式 ④ ,图4对应公式 ③ .
(2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
(3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
①若E为边AC的中点,则的值为 2 ;
②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.
【解答】(1)解:观察图象可得:
图1对应公式①,图2对应公式②,图3对应公式④,图4对应公式③;
故答案为:①,②,④,③;
(2)证明:
如图:
由图可知,矩形BCEF和矩形EGHL都是正方形,
∵AK=BM=BF﹣MF=a﹣b,BD=BC﹣CD=a﹣b,
∴S矩形AKLC=AK•AC=a(a﹣b)=BF•BD=S矩形DBFG,
∴S正方形BCEF=a2=S矩形CDHL+S矩形DBFG+S正方形EGHL=S矩形CDHL+S矩形AKLC+b2,
∴a2=S矩形AKHD+b2,
∵S矩形AKHD=AK•AD=(a﹣b)(a+b),
∴a2=(a﹣b)(a+b)+b2,
∴(a+b)(a﹣b)=a2﹣b2;
(3)解:①设BD=m,
由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
∴AD=BD=CD=m,
∵E是AC中点,
∴HE=DG=m=AH,
∴CG=CD﹣DG=m,BG=FG=BD+DG=m,
∴S1=S△BFG+S△CEG=×m×m+×m×m=m2,
S2=S△ABD+S△AEH=m2+×m×m=m2,
∴=2;
故答案为:2;
②E不为边AC的中点时①中的结论仍成立,证明如下:
设BD=a,DG=b,
由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
∴AD=BD=CD=a,AH=HE=DG=b,EG=CG=a﹣b,FG=BG=a+b,
∴S1=S△BFG+S△CEG=×(a+b)2+×(a﹣b)2=a2+b2,
S2=S△ABD+S△AEH=a2+×b2=(a2+b2),
∴=2.
四.圆的综合题(共1小题)
9.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
(1)求证:DE是半圆O的切线:
(2)当点E落在BD上时,求x的值;
(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠DAO=90°,
∵将△OAD沿OD折叠,得到△OED,
∴∠OED=∠DAO=90°,
∴OE⊥DE,
∵OE是半径,
∴DE是⊙O的切线;
(2)解:如图2中,当点E落在BD上时,
在Rt△ADB中,∠DAB=90°,AD=3,AB=4,
∴BD===5,
∵S△ADB=S△ADO+S△BDO,
∴×3×4=×3×x+×5×x,
∴x=.
(3)解:图2中,当点E落在BD上时,
∵DA=DE,OA=OE,
∴OD垂直平分线段AE,
∵•AD•AO=•DO•AJ,
∴AJ=,
∴AE=2AJ=,
∵AG是直径,
∴∠AEG=∠ABF=90°,
∵∠EAG=∠BAF,
∴△AEG∽△ABF,
∴y==()2==(0<x<);
(4)当⊙O与CD相切时,x=3,
当⊙O经过点C时,x2=(4﹣x)2+32,
∴x=,
观察图象可知,当<x<3或<x≤4时,半圆O与△BCD的边有两个交点.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。
湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共27页。试卷主要包含了问题提出等内容,欢迎下载使用。
湖北省各地区2022年中考数学真题按题型分层分类汇编-06解答题(基础题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-06解答题(基础题),共29页。试卷主要包含了,其中x=2,y=﹣1,先化简,再求值,求代数式+的值,其中x=2+y,2022,解分式方程等内容,欢迎下载使用。