|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
    立即下载
    加入资料篮
    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)01
    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)02
    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)03
    还剩31页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)

    展开
    这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题),共34页。试卷主要包含了,他们称等内容,欢迎下载使用。

    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
    一.二次函数综合题(共5小题)
    1.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.
    例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH=1.
    【基础训练】
    (1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程:   ,   .
    【技能训练】
    (2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;
    【能力提升】
    (3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;
    【拓展升华】
    (4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.
    如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.

    2.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
    (1)求抛物线的解析式;
    (2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
    ①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
    ②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.

    3.(2022•宜昌)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
    (1)填空:a=   ,b=   ;
    (2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;
    (3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.
    ①当m=﹣3时,直接写出n的取值范围;
    ②求m的取值范围.


    4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.


    5.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.
    (1)直接写出A,B两点的坐标;
    (2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;
    (3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).


    二.三角形综合题(共2小题)
    6.(2022•鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.
    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A′,当PA′⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.


    7.(2022•湖北)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.
    (1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
    ①如图1,若∠B=45°,m=5,则n=   ,S=   ;
    ②如图2,若∠B=60°,m=4,则n=   ,S=   ;
    (2)如图3,当∠ACB=∠EDF=90°时,探究S与m,n的数量关系,并说明理由;
    (3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.

    三.四边形综合题(共1小题)
    8.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
    (1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)

    公式①:(a+b+c)d=ad+bd+cd
    公式②:(a+b)(c+d)=ac+ad+bc+bd
    公式③:(a﹣b)2=a2﹣2ab+b2
    公式④:(a+b)2=a2+2ab+b2
    图1对应公式    ,图2对应公式    ,图3对应公式    ,图4对应公式    .
    (2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
    (3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
    ①若E为边AC的中点,则的值为    ;
    ②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.

    四.圆的综合题(共1小题)
    9.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
    (1)求证:DE是半圆O的切线:
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.



    湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
    参考答案与试题解析
    一.二次函数综合题(共5小题)
    1.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.
    例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH=1.
    【基础训练】
    (1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程: (0,) , y=﹣ .
    【技能训练】
    (2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;
    【能力提升】
    (3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;
    【拓展升华】
    (4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.
    如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.

    【解答】解:(1)∵a=2,
    ∴=,
    故答案为:(0,),y=﹣;
    (2)∵a=,
    ∴﹣=﹣2,
    ∴准线为:y=﹣2,
    ∴点P的纵坐标为:4,
    ∴=4,
    ∴x=±4,
    ∴P(4,2)或(﹣4,2);
    (3)如图,


    作AG⊥l于G,作BK⊥l于K,
    ∴AG=AF=4,BK=BF,FH=,
    ∵BK∥FH∥AG,
    ∴△CBK∽△CFH,△CBK∽△CAG,
    ∴,,
    ∴==,,
    ∴a=;
    (4)设点M(m,m2),
    ∵=,
    ∴=2,
    ∴=2,
    ∴m1=﹣2,m2=2(舍去),
    ∴M(﹣2,1),
    ∵E为线段HF的黄金分割点,
    ∴EH==﹣1或EH=2﹣(﹣1)=3﹣,
    当EH=﹣1时,S△HME===﹣1,
    当EH=3﹣时,S△HME=3﹣,
    ∴△HME的面积是﹣1或3﹣.
    2.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
    (1)求抛物线的解析式;
    (2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
    ①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
    ②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.

    【解答】解:(1)由题意得,

    ∴,
    ∴y=x2+x﹣3;
    (2)①如图1,

    设直线PC交x轴于E,
    ∵PD∥OC,
    ∴∠OCE=∠CPD=45°,
    ∵∠COE=90°,
    ∴∠CEO=90°﹣∠ECO=45°,
    ∴∠CEO=∠OCE,
    ∴OE=OC=3,
    ∴点E(3,0),
    ∴直线PC的解析式为:y=x﹣3,
    由x2+x﹣3=x﹣3得,
    ∴x1=﹣,x2=0(舍去),
    当x=﹣时,y=﹣﹣3=﹣,
    ∴P(﹣,﹣);
    ②如图2,

    设点P(m,m2+m﹣3),四边形PECE′的周长记作l,
    点P在第三象限时,作EF⊥y轴于F,
    ∵点E与E′关于PC对称,
    ∴∠ECP=∠E′PC,CE=CE′,
    ∵PE∥y轴,
    ∴∠EPC=∠PCE′,
    ∴∠ECP=∠EPC,
    ∴PE=CE,
    ∴PE=CE′,
    ∴四边形PECE′为平行四边形,
    ∴▱PECE′为菱形,
    ∴CE=PE,
    ∵EF∥OA,
    ∴,
    ∴,
    ∴CE=﹣m,
    ∵PE=﹣(﹣)﹣(+﹣3)=﹣﹣3m,
    ∴﹣=﹣m2﹣3m,
    ∴m1=0(舍去),m2=﹣,
    ∴CE=,
    ∴l=4CE=4×=,
    当点P在第二象限时,
    同理可得:
    ﹣m=+3m,
    ∴m3=0(舍去),m4=﹣,
    ∴l=4×=,
    综上所述:四边形PECE′的周长为:或.
    3.(2022•宜昌)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
    (1)填空:a=  ,b= ﹣ ;
    (2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;
    (3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.
    ①当m=﹣3时,直接写出n的取值范围;
    ②求m的取值范围.


    【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,
    ∴,
    解得,
    故答案为:,﹣;
    (2)设直线BC的解析式为y=dx+e,
    ∵B(4,0),C(0,﹣2),
    ∴,
    解得,
    ∴直线BC的解析式为y=x﹣2,
    ∵直线BC平移得到直线l,直线l与y轴交于点E(0,n),
    ∴直线l的解析式为y=x+n,
    ∵双曲线y=经过点M(m+1,m+3),
    ∴k=(m+1)(m+3),
    ∴y=,
    ∵直线l与双曲线y=有且只有一个交点,
    联立方程组,
    整理得x2+2nx﹣2m2﹣8m﹣6=0,
    ∴Δ=0,即4n2﹣4(﹣2m2﹣8m﹣6)=0,
    ∴n2+2m2+8m+6=0,
    ∴n2=﹣2m2﹣8m﹣6=﹣2(m+2)2+2,
    ∵M点在第二象限,
    ∴m+1<0,m+3>0,
    ∴﹣3<m<﹣1,
    ∴当m=﹣2时,n2可以取得最大值2;
    (3)如图1,当直线l与抛物线有交点时,联立方程组,
    整理得,x2﹣4x﹣4﹣2n=0,
    ∵Δ≥0,即8n+16≥0,
    ∴n≥﹣4,
    当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);
    ①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),
    如图2,当直线l经过点P(2,﹣3)时,此时P点与F点重合,
    ∴n=﹣4时,直线l与四边形MNPQ、抛物线都有交点,且满足直线l与矩形MNPQ的交点的纵坐标都不大于与抛物线的交点的纵坐标;
    如图3,当直线l经过点A时,n=,
    当直线l经过点M时,如图4,n=1,
    ∴≤n≤1,
    综上所述:n的取值范围为:≤n≤1或n=﹣4;
    ②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,直线l与四边形MNPQ、抛物线同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都小于它与抛物线的交点的纵坐标,
    ∴m+3=(m+1)﹣4,
    解得m=﹣13;
    如图5,当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,存在直线l(即经过此时点M的直线l)与四边形MNPQ、平行同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线的交点的纵坐标,
    ∴(m+1)2﹣(m+1)﹣2=m+3,
    解得m=(舍)或m=,
    综上所述:m的取值范围为﹣13≤m≤.





    4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.


    【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),
    ∴A(﹣3,0),
    ∴OA=OC=3,
    ∴C(0,3),
    ∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),
    把(0,3)代入抛物线的解析式,得a=﹣1,
    ∴抛物线的解析式为y=﹣x2﹣2x+3;

    (2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),

    S=S△PAO+S△POC+S△OBC,
    =×3×(﹣m2﹣2m+3)××3×(﹣m)+×1×3
    =(﹣m2﹣3m+4)
    =﹣(m+)2+,
    ∵﹣<0,
    ∴当m=﹣时,S的值最大,最大值为,此时P(﹣,);

    (3)存在,理由如下:
    如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);

    如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),

    由题意,,
    解得,消去n得,3t2+5t﹣10=0,
    解得t=,
    ∴P(,),N(,0)或P′(,),N′(,0).
    综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
    5.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.
    (1)直接写出A,B两点的坐标;
    (2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;
    (3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).


    【解答】解:(1)令y=0,得x2﹣2x﹣3=0,
    解得x=3或﹣1,
    ∴A(﹣1,0),B(3,0);

    (2)∵OP=OA=1,
    ∴P(0,1),
    ∴直线AC的解析式为y=x+1.
    ①若点D在AC的下方时,
    过点B作AC的平行线与抛物线交点即为D1.
    ∵B(3,0),BD1∥AC,
    ∴直线BD1的解析式为y=x﹣3,
    由,解得或,
    ∴D1(0,﹣3),
    ∴D1的横坐标为0.
    ②若点D在AC的上方时,点D1关于点P的对称点G(0,5),
    过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.
    直线l的解析式为y=x+5,
    由,可得x2﹣3x﹣8=0,
    解得x=或,
    ∴D2,D3的横坐标为,,
    综上所述,满足条件的点D的横坐标为0,,.

    (3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,
    由,可得x2﹣(2+k)x﹣3﹣b=0,
    设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,
    ∴xA•xC=xB•xE=﹣3﹣b
    ∵xA=﹣1,
    ∴xC=3+b,
    ∴m=3+b,
    ∵xB=3,
    ∴xE=﹣1﹣,
    ∴n=﹣1﹣,
    设直线CE的解析式为y=px+q,
    同法可得mn=﹣3﹣q
    ∴q=﹣mn﹣3,
    ∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,
    ∴OF=b2+2b,
    ∴=b+1=(m﹣3)+1=m.

    二.三角形综合题(共2小题)
    6.(2022•鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.
    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A′,当PA′⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.


    【解答】解:(1)如图1中,在Rt△AOB中,∠OAB=90°,OA=6,OB=10,
    ∴AB===8,
    ∴B(8,6);

    (2)如图1中,过点P作PH⊥OB于点H.

    ∵∠POH=45°,
    ∴PH=OH,
    设PH=OH=x,
    ∵∠B=∠B,∠BHP=∠BAO=90°,
    ∴△BHP∽△BAO,
    ∴==,
    ∴==,
    ∴BH=x,PB=x,
    ∴x+x=10,
    ∴x=,
    ∴PB=×=,
    ∴PA=AB﹣PB=8﹣=,
    ∴P(,6);

    (3)如图2中,设PA′交OB于点T.

    ∵∠OAB=90°,OE=EB,
    ∴EA=EO=EB=5,
    ∴∠EAB=∠B,
    由翻折的性质可知∠EAB=∠A′,
    ∴∠A′=∠B,
    ∵A′P⊥OB,
    ∴∠ETA′=∠BAO=90°,
    ∴△A′TE∽△BAO,
    ∴=,
    ∴=,
    ∴ET=3,BT=5﹣3=2,
    ∵cosB==,
    ∴=,
    ∴PB=,
    ∴AP=AB=PB=8﹣=,
    ∴P(,6);

    (4)如图3中,以AF为边向右作等边△AFK,连接KG,延长KG交x轴于点R,过点K作KJ⊥AF于点J.KQ⊥OR于点Q,过点O作OW⊥KR于W.

    ∵∠AFK=∠PFG=60°,
    ∴∠AFP=∠KFG,
    ∵FA=FK,FP=FG,
    ∴△AFP≌△KFG(SAS),
    ∴∠PAF=∠GKF=90°,
    ∴点G在直线KR上运动,当点G与W重合时,OG的值最小,
    ∵KJ⊥OA,KQ⊥OR,
    ∴∠KJO=∠JOQ=∠OQK=90°,
    ∴四边形JOQK是矩形,
    ∴OJ=KQ,JK=OQ,
    ∵KA=KF,KJ⊥AF,
    ∴AJ=JF=1,KJ=,
    ∴KQ=OJ=5,
    ∵∠KRQ=360°﹣90°﹣90°﹣120°=60°,
    ∴QR=KQ=,
    ∴OR=+=,
    ∴OW=OR•sin60°=4,
    ∴OG的最小值为4,
    ∵OF=OW=4,∠FOW=60°,
    ∴△FOW是等边三角形,
    ∴FW=4,即FG=4,
    ∴线段FP扫过的面积==.
    7.(2022•湖北)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.
    (1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
    ①如图1,若∠B=45°,m=5,则n= 5 ,S= 25 ;
    ②如图2,若∠B=60°,m=4,则n= 4 ,S= 8 ;
    (2)如图3,当∠ACB=∠EDF=90°时,探究S与m,n的数量关系,并说明理由;
    (3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.

    【解答】解:(1)①如图1中,∵∠ACB=90°,∠B=45°,
    ∴CA=CB,
    ∵CD平分∠ACB,
    ∴AD=DB=5,
    ∵DE⊥AC,DF⊥BC,∠A=∠B=45°,
    ∴△ADE,△BDF都是等腰直角三角形,
    ∴BF=DF=5,AE=DE=5,
    ∴S=×5×5+×5×5=25,
    故答案为:5,25;
    ②如图2中,

    在Rt△ADE中,AD=4,∠A=90°﹣∠B=30°,
    ∴DE=AD=2,AE=DE=6,
    ∵DE⊥AC,DF⊥BC,CD平分∠ACB,
    ∴DE=DF=2,
    ∴BF=2,BD=2BF=4,
    ∴n=4,
    ∴S=×2×6+×2×2=8,
    故答案为:4,8;

    (2)如图3中,过点D作DM⊥AC于点M,DN⊥BC于点N.

    ∵DM⊥AC,DN⊥BC,CD平分∠ACB,
    ∴DM=DN,
    ∵∠DMC=∠DNC=∠MCN=90°,
    ∴四边形ABCD是矩形,
    ∴DM=DN,
    ∴四边形DMCN是正方形,
    ∴∠MDN=∠EDF=90°,
    ∴∠MDE=∠NDF,
    ∵∠DME=∠DNF,
    ∴△DME≌△DNF(ASA),
    ∴S=S△ADE+S△BDF=S△ADM+S△BDN,
    把△BDN绕点D逆时针旋转90°得到右边△ADH,∠ADH=90°,AD=m,DH=n,
    ∴S=mn;

    (3)如图4中,过点D作DM⊥AC于点M,DN⊥BC于点N.

    ∵DM⊥AC,DN⊥BC,CD平分∠ACB,
    ∴DM=DN,
    ∵∠DMC=∠DNC=90°,
    ∴∠MDN=180°﹣∠ACB=120°,
    ∴∠EDF=∠MDN=120°,
    ∴∠EDM=∠FDN,
    ∵∠DME=∠DNF=90°,
    ∴△DME≌△DNF(AAS),
    ∴S=S△ADE+S△BDF=S△ADM+S△BDN,
    把△ADM绕点顺时针旋转120°得到△DNT,∠BDT=60°,DT=6,DB=4,
    过点D作DN⊥BT于点N,
    ∴BH=BD×sin60°=4×=2,
    ∴S=S△BDT=×6×2=6.
    三.四边形综合题(共1小题)
    8.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
    (1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)

    公式①:(a+b+c)d=ad+bd+cd
    公式②:(a+b)(c+d)=ac+ad+bc+bd
    公式③:(a﹣b)2=a2﹣2ab+b2
    公式④:(a+b)2=a2+2ab+b2
    图1对应公式  ① ,图2对应公式  ② ,图3对应公式  ④ ,图4对应公式  ③ .
    (2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
    (3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
    ①若E为边AC的中点,则的值为  2 ;
    ②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.

    【解答】(1)解:观察图象可得:
    图1对应公式①,图2对应公式②,图3对应公式④,图4对应公式③;
    故答案为:①,②,④,③;
    (2)证明:
    如图:

    由图可知,矩形BCEF和矩形EGHL都是正方形,
    ∵AK=BM=BF﹣MF=a﹣b,BD=BC﹣CD=a﹣b,
    ∴S矩形AKLC=AK•AC=a(a﹣b)=BF•BD=S矩形DBFG,
    ∴S正方形BCEF=a2=S矩形CDHL+S矩形DBFG+S正方形EGHL=S矩形CDHL+S矩形AKLC+b2,
    ∴a2=S矩形AKHD+b2,
    ∵S矩形AKHD=AK•AD=(a﹣b)(a+b),
    ∴a2=(a﹣b)(a+b)+b2,
    ∴(a+b)(a﹣b)=a2﹣b2;
    (3)解:①设BD=m,
    由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
    ∴AD=BD=CD=m,
    ∵E是AC中点,
    ∴HE=DG=m=AH,
    ∴CG=CD﹣DG=m,BG=FG=BD+DG=m,
    ∴S1=S△BFG+S△CEG=×m×m+×m×m=m2,
    S2=S△ABD+S△AEH=m2+×m×m=m2,
    ∴=2;
    故答案为:2;
    ②E不为边AC的中点时①中的结论仍成立,证明如下:
    设BD=a,DG=b,
    由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
    ∴AD=BD=CD=a,AH=HE=DG=b,EG=CG=a﹣b,FG=BG=a+b,
    ∴S1=S△BFG+S△CEG=×(a+b)2+×(a﹣b)2=a2+b2,
    S2=S△ABD+S△AEH=a2+×b2=(a2+b2),
    ∴=2.
    四.圆的综合题(共1小题)
    9.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
    (1)求证:DE是半圆O的切线:
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.


    【解答】(1)证明:∵四边形ABCD是矩形,
    ∴∠DAO=90°,
    ∵将△OAD沿OD折叠,得到△OED,
    ∴∠OED=∠DAO=90°,
    ∴OE⊥DE,
    ∵OE是半径,
    ∴DE是⊙O的切线;

    (2)解:如图2中,当点E落在BD上时,

    在Rt△ADB中,∠DAB=90°,AD=3,AB=4,
    ∴BD===5,
    ∵S△ADB=S△ADO+S△BDO,
    ∴×3×4=×3×x+×5×x,
    ∴x=.

    (3)解:图2中,当点E落在BD上时,

    ∵DA=DE,OA=OE,
    ∴OD垂直平分线段AE,
    ∵•AD•AO=•DO•AJ,
    ∴AJ=,
    ∴AE=2AJ=,
    ∵AG是直径,
    ∴∠AEG=∠ABF=90°,
    ∵∠EAG=∠BAF,
    ∴△AEG∽△ABF,
    ∴y==()2==(0<x<);

    (4)当⊙O与CD相切时,x=3,
    当⊙O经过点C时,x2=(4﹣x)2+32,
    ∴x=,
    观察图象可知,当<x<3或<x≤4时,半圆O与△BCD的边有两个交点.

    相关试卷

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。

    湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共27页。试卷主要包含了问题提出等内容,欢迎下载使用。

    湖北省各地区2022年中考数学真题按题型分层分类汇编-06解答题(基础题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-06解答题(基础题),共29页。试卷主要包含了,其中x=2,y=﹣1,先化简,再求值,求代数式+的值,其中x=2+y,2022,解分式方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map