高中3.1 函数公开课教案
展开4.5.2 形形色色的函数模型
教学设计 一、目标展示 二、情境导入 随着经济和社会的发展,汽车已逐步成为人们外出的代步工具.下面是某地一汽车销售公司对近三年的汽车销售量的统计表:
结合以上三年的销量及人们生活的需要,2021年初,该汽车销售公司的经理提出全年预售43万辆汽车的目标. [问题] (1)在实际生产生活中,对已收集到的样本数据常采用什么方式获取直观信息? (2)你认为该目标能够实现吗? 三、合作探究 知识点 几种常见函数模型
四、精讲点拨 [例1] 十一长假期间,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用(人工费,消耗费用等等).受市场调控,每个房间每天的房价不得高于340元.设每个房间每天的房价增加x元(x≥0且x为10的整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为W元,求W与x的函数关系式; (3)一天订住多少个房间时,宾馆每天的利润最大?最大利润是多少元? [例2] (链接教科书第139页例3)某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售单价P(x)(单位:元)与时间x(单位:天,1≤x≤30,x∈N+)的函数关系满足P(x)=1+(k为正常数).该商品的日销售量Q(x)(单位:个)与时间x的部分数据如下表所示:
已知第10天该商品的日销售收入为121元. (1)求k的值; (2)给出以下四种函数模型:①Q(x)=ax+b;②Q(x)=a|x-25|+b;③Q(x)=a·bx;④Q(x)=a·logbx. 请你根据表中的数据,从中选择最合适的一种函数模型来描述该商品的日销售量Q(x)与时间x的关系,并求出该函数的解析式; (3)求该商品的日销售收入f(x)(单位:元)的最小值. 五、达标检测 1.衣柜里的樟脑丸随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为V=ae-kt,新丸经过50天后,体积变为a.若一个新丸体积变为a,则需经过的天数为( ) A.75 B.100 C.125 D.150 2.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=2kx+m(k,m为常数).若该食品在0 ℃的保鲜时间是64小时,在18 ℃的保鲜时间是16小时,则该食品在36 ℃的保鲜时间是( ) A.4小时 B.8小时 C.16小时 D.32小时 3.某工厂生产一种电脑元件,每月的生产数据如下表:
为估计以后每月该电脑元件的产量,以这三个月的产量为依据,用函数y=ax+b或y=ax+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问用以上哪个模拟函数较好?说明理由. 六、课堂小结 几种常见函数模型;
课后作业
教后反思
|
湘教版(2019)必修 第一册4.4 函数与方程优秀教案及反思: 这是一份湘教版(2019)必修 第一册4.4 函数与方程优秀教案及反思,共6页。教案主要包含了目标展示,情境导入,合作探究,精讲点拨,达标检测,课堂小结等内容,欢迎下载使用。
必修 第一册4.1 实数指数幂和幂函数精品教案: 这是一份必修 第一册4.1 实数指数幂和幂函数精品教案,共4页。教案主要包含了目标展示,情境导入,合作探究,达标检测,课堂小结等内容,欢迎下载使用。
高中数学湘教版(2019)必修 第一册3.1 函数优秀教案: 这是一份高中数学湘教版(2019)必修 第一册3.1 函数优秀教案,共4页。教案主要包含了目标展示,情境导入,合作探究,精讲点拨,达标检测,课堂小结等内容,欢迎下载使用。