初中数学浙教版八年级上册1.4 全等三角形一等奖教学设计
展开1.4全等三角形概念及性质
知识点梳理
1、全等图形
(1)全等形的概念
能够完全重合的两个图形叫做全等形.
(2)全等三角形
能够完全重合的两个三角形叫做全等三角形.
(3)三角形全等的符号
“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.
(4)对应顶点、对应边、对应角
把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.
2、全等三角形的性质
(1)性质1:全等三角形的对应边相等
性质2:全等三角形的对应角相等
说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等
②全等三角形的周长相等,面积相等
③平移、翻折、旋转前后的图形全等
(2)关于全等三角形的性质应注意
①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.
②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.
题型梳理
题型一 全等图形辨析及性质
1.下列说法:
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为( )
A.①②③④ B.①②③ C.②③④ D.①②④
2.小明学习了全等三角形后总结了以下结论:
①全等三角形的形状相同、大小相等;
②全等三角形的对应边相等、对应角相等;
③面积相等的两个三角形是全等图形;
④全等三角形的周长相等.
其中正确的结论个数是( )
A.1 B.2 C.3 D.4
3.下列说法正确的是( )
A.全等三角形是指形状相同的三角形
B.全等三角形是指面积相等的两个三角形
C.全等三角形的周长和面积相等
D.所有等边三角形是全等三角形
4.下列说法中正确的是( )
A.两个面积相等的图形,一定是全等图形
B.两个等边三角形是全等图形
C.两个全等图形的面积一定相等
D.若两个图形周长相等,则它们一定是全等图形
5.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )
A.①②④ B.①③④ C.②③④ D.①②③④
6.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
7.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是 .
8.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.
如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.
下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′
(1)其中,符合要求的条件是 .(直接写出编号)
(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.
题型二 全等三角形对应角相等
1.已知图中的两个三角形全等,则∠1等于( )
A.72° B.60° C.50° D.58°
2.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )
A.∠B B.∠A C.∠EMF D.∠AFB
3.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为( )
A.20° B.30° C.35° D.40°
4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )
A.40° B.35° C.30° D.25°
5.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )
A.α=β B.α=2β C.α+β=90° D.α+2β=180°
6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A.20° B.30° C.35° D.40°
7.如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为( )
A.20° B.40° C.70° D.90°
8.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为( )
A.65° B.70° C.75° D.85°
9.已知图中的两个三角形全等,则∠α度数是( )
A.50° B.58° C.60° D.72°
10.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= .
11.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为 .
12.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= 度.
13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C= 度.
14.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 度.
15.如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN= .
16.已知图中的两个三角形全等,则∠1等于 度.
17.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为 .
18.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为 .
19.如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
20.如图,在△ABC≌△DEC,点D在AB上,且AB∥CE,∠A=75°,求∠DCB的度数.
题型三 全等三角形对应边相等
1.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )
A.2 B.2.5 C.3 D.5
2.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为( )
A.2 B.2或73 C.73或32 D.2或73或32
3.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为( )
A.2 B.3 C.5 D.7
4.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 .
5.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= .
6.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为 .
7.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y= .
8.如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.
题型五 全等三角形性质综合运用
1.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED
3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是( )
①AC=AF,
②∠FAB=∠EAB,
③EF=BC,
④∠EAB=∠FAC,
A.①② B.①③④ C.①②③④ D.①③
4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )
A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等
C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC
5.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不一定成立的是( )
A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD
6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
7.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=105°,∠CAD=5°,∠B=50°,则∠DEF的度数 .
8.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,
(1)当DE=8,BC=5时,线段AE的长为 ;
(2)已知∠D=35°,∠C=60°,
①求∠DBC的度数;
②求∠AFD的度数.
9.如图,△ABD≌△EBC,AB=3cm,BC=6cm,
(1)求DE的长.
(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?
10.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.
(1)求线段AE的长.
(2)求∠DBC的度数.
答案与解析
题型一 全等图形辨析及性质
1.下列说法:
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为( )
A.①②③④ B.①②③ C.②③④ D.①②④
【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.
【解答】解:①全等三角形的形状相同、大小相等,说法正确;
②全等三角形的对应边相等、对应角相等,说法正确;
③面积相等的两个三角形全等,说法错误;
④全等三角形的周长相等,说法正确;
故选:D.
2.小明学习了全等三角形后总结了以下结论:
①全等三角形的形状相同、大小相等;
②全等三角形的对应边相等、对应角相等;
③面积相等的两个三角形是全等图形;
④全等三角形的周长相等.
其中正确的结论个数是( )
A.1 B.2 C.3 D.4
【分析】直接利用全等三角形的性质分别分析得出答案.
【解答】解:①全等三角形的形状相同、大小相等,正确;
②全等三角形的对应边相等、对应角相等,正确;
③面积相等的两个三角形是全等图形,错误;
④全等三角形的周长相等,正确.
故选:C.
3.下列说法正确的是( )
A.全等三角形是指形状相同的三角形
B.全等三角形是指面积相等的两个三角形
C.全等三角形的周长和面积相等
D.所有等边三角形是全等三角形
【分析】能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.
【解答】解:A、全等三角形不仅仅形状相同而且大小相同,错;
B、全等三角形不仅仅面积相等而且要边、角完全相同,错;
C、全等则重合,重合则周长与面积分别相等,则C正确.
D、完全相同的等边三角形才是全等三角形,错.
故选:C.
4.下列说法中正确的是( )
A.两个面积相等的图形,一定是全等图形
B.两个等边三角形是全等图形
C.两个全等图形的面积一定相等
D.若两个图形周长相等,则它们一定是全等图形
【分析】依据全等图形的定义和性质进行判断即可.
【解答】解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.
故选:C.
5.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )
A.①②④ B.①③④ C.②③④ D.①②③④
【分析】根据全等形和全等三角形的概念知进行做题,对选项逐一进行验证,符合性质的是正确的,与性质、定义相矛盾的是错误的.
【解答】解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的.
故选:D.
6.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
【分析】根据全等形是能够完全重合的两个图形进行分析判断.
【解答】解:A、两个图形能够完全重合,故本选项正确.
B、圆内两条相交的线段不能完全重合,故本选项错误;
C、两个正方形的边长不相等,不能完全重合,故本选项错误;
D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;
故选:A.
7.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是 乙、丙 .
【分析】甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.
【解答】解:由图形可知,甲有一边一角,不能判断两三角形全等,
乙有两边及其夹角,能判断两三角形全等,
丙得出两角及其一角对边,能判断两三角形全等,
根据全等三角形的判定得,乙丙正确.
故答案为:乙、丙.
8.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.
如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.
下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′
(1)其中,符合要求的条件是 ①②④ .(直接写出编号)
(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.
【分析】(1)根据题意即可得到结论;
(2)连接AC、A′C′,根据全等三角形的判定和性质定理即可得到结论.
【解答】解:(1)符合要求的条件是①②④,
故答案为:①②④;
(2)选④,
证明:连接AC、A′C′,
在△ABC与△A′B′C′中,AB=A'B'∠B=∠B'BC=B'C',
∴△ABC≌△A′B′C′(SAS),
∴AC=A′C′,∠ACB=∠A′C′B′,
∵∠BCD=∠B′C′D′,
∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,
∴∠ACD=∠A′C′D′,
在△ACD和△A′C′D中,
AC=A'C'∠ACD=∠A'C'D'CD=C'D',
∴△ACD≌△A′C′D′(SAS),
∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,
∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,
即∠BAD=∠B′A′D′,
∴四边形ABCD和四边形A′B′C′D′中,
AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,
∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,
∴四边形ABCD≌四边形A′B′C′D′.
题型二 全等三角形对应角相等
1.已知图中的两个三角形全等,则∠1等于( )
A.72° B.60° C.50° D.58°
【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.
【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.
∵图中的两个三角形全等,
∴∠1=∠2=58°.
故选:D.
2.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )
A.∠B B.∠A C.∠EMF D.∠AFB
【分析】由全等三角形的性质:对应角相等即可得到问题的选项.
【解答】解:
∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,
∴∠DCE=∠B,
故选:A.
3.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为( )
A.20° B.30° C.35° D.40°
【分析】根据全等三角形的性质得到∠ACB=∠A′CB′,根据角的和差计算得到答案.
【解答】解:∵△ACB≌△A′CB′,
∴∠ACB=∠A′CB′,
∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,
即∠BCB′=∠ACA′,又∠ACA′=30°,
∴∠BCB′=30°,
故选:B.
4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )
A.40° B.35° C.30° D.25°
【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.
【解答】解:∵∠B=80°,∠C=30°,
∴∠BAC=180°﹣80°﹣30°=70°,
∵△ABC≌△ADE,
∴∠DAE=∠BAC=70°,
∴∠EAC=∠DAE﹣∠DAC,
=70°﹣35°,
=35°.
故选:B.
5.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )
A.α=β B.α=2β C.α+β=90° D.α+2β=180°
【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.
【解答】解:∵△AOB≌△ADC,
∴AB=AC,∠BAO=∠CAD,
∴∠BAC=∠OAD=α,
在△ABC中,∠ABC=12(180°﹣α),
∵BC∥OA,
∴∠OBC=180°﹣∠O=180°﹣90°=90°,
∴β+12(180°﹣α)=90°,
整理得,α=2β.
故选:B.
6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A.20° B.30° C.35° D.40°
【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.
【解答】解:∵△ACB≌△A′CB′,
∴∠ACB=∠A′CB′,
即∠ACA′+∠A′CB=∠B′CB+∠A′CB,
∴∠ACA′=∠B′CB,
又∠B′CB=30°
∴∠ACA′=30°.
故选:B.
7.如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为( )
A.20° B.40° C.70° D.90°
【分析】根据全等三角形对应角相等,∠ACB=∠A′CB′,所以∠BCB′=∠BCB′,再根据角的和差关系代入数据计算即可.
【解答】解:∵△ACB≌△A′CB′,
∴∠ACB=∠A′CB′,
∴∠BCB′=∠A′CB′﹣∠A′CB=70°.
故选:C.
8.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为( )
A.65° B.70° C.75° D.85°
【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.
【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,
∴∠B=∠D=40°,∠E=∠C=75°,
∴∠EAD=180°﹣∠D﹣∠E=65°,
故选:A.
9.已知图中的两个三角形全等,则∠α度数是( )
A.50° B.58° C.60° D.72°
【分析】根据全等三角形对应角相等解答即可.
【解答】解:∵两个三角形全等,
∴α=50°.
故选:A.
10.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120° .
【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.
【解答】解:∵△ABC≌△A′B′C′,
∴∠C=∠C′=24°,
∴∠B=180°﹣∠A﹣∠C=120°,
故答案为:120°.
11.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为 70° .
【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.
【解答】解:∵△ABC≌△ADE,
∴AB=AD,∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠EAC,
∵∠EAC=40°,
∴∠BAD=40°,
∵AB=AD,
∴∠B=∠ADB=12(180°﹣∠BAD)=70°,
故答案为:70°.
12.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= 120 度.
【分析】结合已知运用两三角形全等及一个角的外角等于另外两个内角的和,就可以得到∠CAE,然后又可以得到∠AEB.
【解答】解:∵△OAD≌△OBC,
∴∠D=∠C=25°,
∴∠CAE=∠O+∠D=95°,
∴∠AEB=∠C+∠CAE=25°+95°=120°.
故填120
13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C= 30 度.
【分析】因为三个三角形为全等三角形,则对应边相等,从而得到∠C=∠CBD=∠DBA,再利用这三角之和为90°,求得∠C的度数.
【解答】解:∵△ADB≌△EDB≌△EDC,
∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,
又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°
∴∠EDC=60°,∠DEC=90°,
在△DEC中,∠EDC=60°,∠DEC=90°
∴∠C=30°.
故答案为:30.
14.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 95 度.
【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.
【解答】解:∵△OAD≌△OBC,
∴∠OAD=∠OBC;
在△OBC中,∠O=65°,∠C=20°,
∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;
∴∠OAD=∠OBC=95°.
故答案为:95.
15.如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN= 1:4 .
【分析】根据三角形内角和定理分别求出∠A、∠ABC、∠ACB,根据全等三角形的性质、三角形的外角的性质计算即可.
【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,
∴∠A=30°,∠ABC=50°,∠ACB=100°,
∵△MNC≌△ABC,
∴∠N=∠ABC=50°,∠M=∠A=30°,
∴∠MCA=∠M+∠N=80°,
∴∠BCM=20°,∠BCN=80°,
∴∠BCM:∠BCN=1:4,
故答案为:1:4.
16.已知图中的两个三角形全等,则∠1等于 58 度.
【分析】利用三角形的内角和等于180°求出边b所对的角的度数,再根据全等三角形对应角相等解答.
【解答】解:如图,∠2=180°﹣50°﹣72°=58°,
∵两个三角形全等,
∴∠1=∠2=58°.
故答案为:58.
17.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为 25° .
【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.
【解答】解:∵△ABC≌△ADE,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB,
∵∠BAD=130°,
∴∠ABD=∠ADB=25°,
∵AE∥BD,
∴∠DAE=∠ADB,
∴∠DAE=25°,
∴∠BAC=25°,
故答案为:25°.
18.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为 100° .
【分析】根据全等三角形的对应角相等求出∠D,根据三角形的外角性质计算,得到答案.
【解答】解:∵△ABC≌△ADE,
∴∠D=∠B=40°,
∴∠BED=∠A+∠D=60°+40°=100°,
故答案为:100°.
19.如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.
【解答】解:∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∵∠EAB=120°,
∴∠DAE+∠CAD+∠BAC=120°,
∵∠CAD=10°,
∴∠BAC=12(120°﹣10°)=55°,
∴∠BAF=∠BAC+∠CAD=65°,
∴∠DFB=∠BAF+∠B=65°+25°=90°;
∵∠DFB=∠D+∠DGB,
∴∠DGB=90°﹣25°=65°.
20.如图,在△ABC≌△DEC,点D在AB上,且AB∥CE,∠A=75°,求∠DCB的度数.
【分析】利用全等三角形的性质可得AC=CD,∠ACB=∠DCE,然后分别计算出∠ACD和∠ADC的度数,进而可得答案.
【解答】解:∵△ABC≌△DEC,
∴AC=CD,∠ACB=∠DCE,
∴∠A=∠ADC,
∵∠A=75°,
∴∠ADC=75°,
∴∠ACD=180°﹣75°﹣75°=30°,
∴∠ACB=30°,
∵AB∥CE,
∴∠DCE=∠ADC=75°,
∴∠ACB=75°,
∴∠DCB=75°﹣30°=45°.
题型三 全等三角形对应边相等
1.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )
A.2 B.2.5 C.3 D.5
【分析】根据全等三角形性质求出AC,即可求出答案.
【解答】解:∵△ABE≌△ACF,AB=5,
∴AC=AB=5,
∵AE=2,
∴EC=AC﹣AE=5﹣2=3,
故选:C.
2.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为( )
A.2 B.2或73 C.73或32 D.2或73或32
【分析】首先根据全等三角形的性质即可得到结论.
【解答】解:∵△ABC与△DEF全等,
∴3+4+5=3+3x﹣2+2x+1,
解得:x=2,
故选:A.
3.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为( )
A.2 B.3 C.5 D.7
【分析】利用全等三角形的性质可得EF=BC=7,再解即可.
【解答】解:∵△ABC≌△DEF,
∴EF=BC=7,
∵EC=4,
∴CF=3,
故选:B.
4.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .
【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.
【解答】解:∵△ABC≌△ADE,
∴AE=AC,
∵AB=7,AC=3,
∴BE=AB﹣AE=AB﹣AC=7﹣3=4.
故答案为:4.
5.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11 .
【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.
【解答】解:∵这两个三角形全等,两个三角形中都有2
∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5
∴x+y=11.
故答案为:11.
6.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为 3 .
【分析】直接利用全等三角形的性质周长相等,进而得出答案.
【解答】解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,
∴3+5+7=3+3x﹣2+2x﹣1,
解得:x=3.
故答案为:3.
7.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y= 1 .
【分析】根据全等三角形的对应边相等分别求出x、y,计算即可.
【解答】解:∵两个三角形全等,
∴x=6,y=5,
∴x﹣y=6﹣5=1,
故答案为:1.
8.如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.
【分析】直接利用全等三角形的性质得出AC=AD,进而得出答案.
【解答】解:∵△ACF≌△ADE,AD=12,AE=5,
∴AC=AD=12,AE=AF=5,
∴DF=12﹣5=7.
题型五 全等三角形性质综合运用
1.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.
【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选:D.
2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED
【分析】根据全等三角形的性质即可得到结论.
【解答】解:∵△ABC≌△ADE,
∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,
故选:B.
3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是( )
①AC=AF,
②∠FAB=∠EAB,
③EF=BC,
④∠EAB=∠FAC,
A.①② B.①③④ C.①②③④ D.①③
【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠FAC.
【解答】解:∵△ABC≌△AEF,
∴AC=AF,EF=CB,∠EAF=∠BAC,
∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,
∴∠EAB=∠FAC,
正确的是①③④,
故选:B.
4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )
A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等
C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC
【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.
【解答】解:A、∵△ABD≌△CDB,
∴△ABD和△CDB的面积相等,故本选项错误;
B、∵△ABD≌△CDB,
∴△ABD和△CDB的周长相等,故本选项错误;
C、∵△ABD≌△CDB,
∴∠A=∠C,∠ABD=∠CDB,
∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;
D、∵△ABD≌△CDB,
∴AD=BC,∠ADB=∠CBD,
∴AD∥BC,故本选项错误;
故选:C.
5.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不一定成立的是( )
A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD
【分析】根据全等三角形的对应边相等、对应角相等判断即可.
【解答】解:∵△ABD≌△ACE,
∴BD=CE,
∴BE=CD,B成立,不符合题意;
∠ADB=∠AEC,
∴∠ADE=∠AED,C成立,不符合题意;
∠BAD=∠CAE,
∴∠BAE=∠CAD,D成立,不符合题意;
AC不一定等于CD,A不成立,符合题意,
故选:A.
6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
【分析】因为AB∥ED,所以∠B=∠D,又因为CD=BF,则添加AB=DE后可根据SAS判定△ABC≌△DEF.
【解答】解:∵AB∥ED,
∵∠B=∠D,
∵CD=BF,CF=FC,
∴BC=DF.
在△ABC和△DEF中
BC=DF,∠B=∠D,AB=DE,
∴△ABC≌△DEF.
故选:C.
7.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=105°,∠CAD=5°,∠B=50°,则∠DEF的度数 30° .
【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.
【解答】解:∵∠ACB=105°,∠B=50°,
∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.
又∵△ABC≌△ADE,
∴∠EAD=∠CAB=25°.
又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=5°,
∴∠EAB=25°+5°+25°=55°,
∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣55°﹣50°=75°,
∴∠DEF=∠AED﹣∠AEB=105°﹣75°=30°.
故答案为:30°
8.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,
(1)当DE=8,BC=5时,线段AE的长为 3 ;
(2)已知∠D=35°,∠C=60°,
①求∠DBC的度数;
②求∠AFD的度数.
【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;
(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;
②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.
【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,
∴AB=DE=8,BE=BC=5,
∴AE=AB﹣BE=8﹣5=3,
故答案为:3;
(2)①∵△ABC≌△DEB
∴∠A=∠D=35°,∠DBE=∠C=60°,
∵∠A+∠ABC+∠C=180°,
∴∠ABC=180°﹣∠A﹣∠C=85°,
∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;
②∵∠AEF是△DBE的外角,
∴∠AEF=∠D+∠DBE=35°+60°=95°,
∵∠AFD是△AEF的外角,
∴∠AFD=∠A+∠AEF=35°+95°=130°.
9.如图,△ABD≌△EBC,AB=3cm,BC=6cm,
(1)求DE的长.
(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?
【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD﹣BE代入数据进行计算即可得解;
(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.
【解答】解:(1)∵△ABD≌△EBC,
∴BD=BC=6cm,BE=AB=3cm,
∴DE=BD﹣BE=3cm;
(2)DB⊥AC.理由如下:
∵△ABD≌△EBC,
∴∠ABD=∠EBC,
又∵∠ABD+∠EBC=180°,
∴∠ABD=∠EBC=90°,
∴DB⊥AC.
10.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.
(1)求线段AE的长.
(2)求∠DBC的度数.
【分析】(1)根据全等三角形的性质得到AB=DE=10,BE=BC=4,结合图形计算,得到答案;
(2)根据全等三角形的性质得到∠BAC=∠D=30°,∠DBE=∠C=70°,根据三角形内角和定理求出∠ABC,计算即可.
【解答】解:(1)∵△ABC≌△DEB,DE=10,BC=4,
∴AB=DE=10,BE=BC=4,
∴AE=AB﹣BE=6;
(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,
∴∠BAC=∠D=30°,∠DBE=∠C=70°,
∴∠ABC=180°﹣30°﹣70°=80°,
∴∠DBC=∠ABC﹣∠DBE=10°.
初中数学湘教版八年级上册5.1 二次根式获奖教学设计: 这是一份初中数学湘教版八年级上册5.1 二次根式获奖教学设计,共6页。教案主要包含了二次根式的概念,二次根式有,二次根式的重要性质等内容,欢迎下载使用。
浙教版八年级上册1.4 全等三角形教案设计: 这是一份浙教版八年级上册1.4 全等三角形教案设计,共5页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
浙教版八年级上册1.4 全等三角形教案: 这是一份浙教版八年级上册1.4 全等三角形教案,共1页。教案主要包含了学习目标,学习重点,学习难点,自主学习,学以致用,范例解析,巩固提高,拓展延伸等内容,欢迎下载使用。