人教A版 (2019)必修 第一册5.1 任意角和弧度制图片ppt课件
展开1.了解任意角的概念,区分正角、负角与零角.
2.了解象限角的概念,理解并掌握终边相同的角的概念,能写出终边相同的角所组成的集合.
3.利用象限角和终边相同的角的概念解决简单的问题.
同学们,钟表是帮助我们掌握时间的好帮手,生活中我们经常听到时钟慢了5分钟,或时钟快了30分钟,应该如何校准?再比如,我们一节课45分钟,时针、分针以及秒针分别旋转了多少度?再比如在体操、花样游泳、跳水等项目中,我们也常常听到“前空翻转体540度”“后空翻转体720度”等这样的解说,这些问题都和角度是分不开的,为了研究这些问题,我们开始今天的新课.
问题1 在初中是如何定义角的?角的范围是多少?
提示 角可以看成一条射线绕着它的端点旋转所成的图形,角的范围是0°~360°.
1.角的概念角可以看成一条 绕着它的端点 所成的 .2.角的表示
如图所示,角α可记为“α”或“∠α”或“∠AOB”,始边: ,终边: ,顶点: .
4.任意角我们把角的概念推广到了 ,包括 、 和 .5.相反角我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为 .
具体过程详见下页GeGebra动画演示.
若手表时针走过4小时,则时针转过的角度为A.120° B.-120°C.-60° D.60°
由于时针是顺时针旋转,故时针转过的角度为负数,
正确理解锐角、直角、钝角、平角、周角等概念,弄清角的始边与终边及旋转方向与大小.逆时针旋转形成一个正角,顺时针旋转形成一个负角.正角与负角是表示具有相反意义的旋转量,它的正负规定纯属习惯,就好像正数和负数的规定一样.
经过2个小时,钟表的时针和分针转过的角度分别是A.60°,720° B.-60°,-720°C.-30°,-360° D.-60°,720°
问题2 现在,我们把角的概念推广到了任意角,如何更形象地表示一个角?
提示 我们通常在直角坐标系内讨论角,为了方便,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角.
(1)锐角是第一象限角,钝角是第二象限角,直角的终边在坐标轴上,它不属于任何一个象限.(2)每一个象限都有正角和负角.(3)无法比较两个象限角的大小.
(多选)在①160°;②480°;③-960°;④1 530°下列四个角中,属于第二象限角的是A.160° B.480° C.-960° D.1 530°
A中,160°很显然是第二象限角;B中,480°=120°+360°是第二象限角;C中,-960°=-3×360°+120°是第二象限角;D中,1 530°=4×360°+90°不是第二象限角.
正确理解象限角与锐角、直角、钝角、平角、周角等概念的关系,需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.
(多选)下列叙述不正确的是A.三角形的内角是第一象限角或第二象限角B.钝角是第二象限角C.第二象限角比第一象限角大D.小于180°的角是钝角、直角或锐角
直角不属于任何一个象限,故A不正确;钝角是大于90°小于180°的角,是第二象限角,故B正确;由于120°是第二象限角,390°是第一象限角,120°<390°,故C不正确;由于零角和负角也小于180°,故D不正确.
问题3 给定一个角,它的终边是否唯一?若两角的终边相同,那么这两个角相等吗?
提示 给定一个角,它的终边唯一;两角终边相同,这两个角不一定相等,比如30°的终边和390°的终边相同,它们正好相差了360°.
终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
已知α=-1 845°,在与α终边相同的角中,求满足下列条件的角.(1)最小的正角;
因为-1 845°=-45°+(-5)×360°,即-1 845°角与-45°角的终边相同,所以与角α终边相同的角的集合是{β|β=-45°+k·360°,k∈Z},最小的正角为315°.
最大的负角为-45°.
(3)-360°~720°之间的角.
-360°~720°之间的角分别是-45°,315°,675°.
终边相同的角的表示(1)终边相同的角都可以表示成α+k·360°(k∈Z)的形式.(2)终边相同的角相差360°的整数倍.
若角2α与240°角的终边相同,则α等于A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z
角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.
区域角以及终边在已知直线上的角的表示
已知角α的终边在图中阴影部分内,试指出角α的取值范围.
终边在30°角的终边所在直线上的角的集合为S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k∈Z},因此,终边在图中阴影部分内的角α的取值范围为{α|30°+k·180°≤α<105°+k·180°,k∈Z}.
(1)象限角的判定方法①根据图象判定.利用图象实际操作时,依据是终边相同的角的思想,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.②将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°之间没有两个角终边是相同的.
(2)表示区域角的三个步骤第一步:先按逆时针的方向找到区域的起始和终止边界.第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α
终边落在OA位置上的角的集合为{α|α=210°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=300°+k·360°,k∈Z}.
(2)写出终边落在阴影部分(包括边界)的角的集合.
终边落在阴影部分(包括边界)的角的集合是{α|210°+k·360°≤α≤300°+k·360°,k∈Z}.
1.知识清单:(1)正角、负角、零角的概念.(2)终边相同的角的表示.(3)象限角、区域角的表示.2.方法归纳:数形结合、分类讨论.3.常见误区:锐角与小于90°角的区别,终边相同的角的表示中漏掉k∈Z.
1.“α是锐角”是“α是第一象限角”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
因为α是锐角能推出α是第一象限角,但是反之不成立,例如400°是第一象限角,但不是锐角,所以“α是锐角”是“α是第一象限角”的充分不必要条件.
2.2 022°是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角
2 022°=5×360°+222°,所以2 022°角的终边与222°角的终边相同,为第三象限角.
3.与-460°角终边相同的角可以表示成A.460°+k·360°,k∈Z B.100°+k·360°,k∈ZC.260°+k·360°,k∈Z D.-260°+k·360°,k∈Z
因为-460°=260°+(-2)×360°,故与-460°角终边相同的角可以表示成260°+k·360°,k∈Z.
4.已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是_________________________________________.
{α|45°+k·360°<α<150°+k·360°,k∈Z}
观察图形可知,角α的集合是{α|45°+k·360°<α<150°+k·360°,k∈Z}.
1.如果角α的终边上有一点P(0,-3),那么αA.是第三象限角 B.是第四象限角C.是第三或第四象限角 D.不是象限角
点P(0,-3)在y轴负半轴上,故α的终边为y轴的负半轴.
2.若α是第四象限角,则180°-α是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角
可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.
3.时针走过2小时40分,则分针转过的角度是A.80° B.-80° C.960° D.-960°
由于时针、分针都是顺时针旋转,∴时针走过2小时40分,分针转过的角度为-2×360°-240°=-960°.
4.下面各组角中,终边相同的是A.390°,690° B.-330°,750°C.480°,-420° D.3 000°,-840°
因为-330°=-360°+30°,750°=2×360°+30°,所以-330°与750°终边相同.
5.如图,终边在阴影部分(含边界)的角的集合是A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z}
如题图,终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.
6.(多选)下列四个角为第二象限角的是A.-200° B.100° C.220° D.420°
-200°=-360°+160°,在0°~360°范围内,与-200°终边相同的角为160°,它是第二象限角,同理100°为第二象限角,220°为第三象限角,420°为第一象限角.
∵1 112°=360°×3+32°,∴1 112°的终边与32°的终边相同,均为第一象限角.
7.1 112°角是第_____象限角.
8.在0°~360°范围内,与角-60°的终边在同一条直线上的角为 ____________.
与角-60°的终边在同一条直线上的角可表示为β=-60°+k·180°,k∈Z.∵所求角在0°~360°范围内,∴0°≤-60°+k·180°≤360°,k∈Z,
∴k=1或2.当k=1时,β=120°;当k=2时,β=300°.
9.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;
α=-1 910°=-6×360°+250°,它是第三象限角.
(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.
令θ=250°+n·360°(n∈Z),取n=-1,-2就得到符合-720°≤θ<0°的角.当n=-1时,θ=250°-360°=-110°;当n=-2时,θ=250°-720°=-470°.故θ=-110°或θ=-470°.
10.在平面直角坐标系中,用阴影表示下列集合:(1){α|30°+k·360°≤α≤60°+k·360°,k∈Z};
根据任意角的定义,画出集合{α|30°+k·360°≤α≤60°+k·360°,k∈Z}对应的区域如图阴影部分(含边界)所示.
(2){α|30°+k·180°≤α≤60°+k·180°,k∈Z}.
根据任意角的定义,画出集合{α|30°+k·180°≤α≤60°+k·180°,k∈Z}对应的区域如图阴影部分(含边界)所示.
11.(多选)角α=45°+k·180°(k∈Z)的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限
当k=2m+1(m∈Z)时,α=2m·180°+225°=m·360°+225°,故α为第三象限角;当k=2m(m∈Z)时,α=m·360°+45°,故α为第一象限角.故α的终边落在第一或第三象限.
12.终边与坐标轴重合的角α的集合是A.{α|α=k·360°,k∈Z}B.{α|α=90°+k·180°,k∈Z}C.{α|α=k·180°,k∈Z}D.{α|α=k·90°,k∈Z}
终边在坐标轴上的角为90°的整数倍,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.
13.已知α为锐角,则2α为A.第一象限角 B.第二象限角C.第一或第二象限角 D.小于180°的正角
因为α为锐角,所以0°<α<90°,则0°<2α<180°.
14.若α为△ABC的一个内角,且4α与120°的终边相同,则α=__________.
∵4α=120°+k·360°,k∈Z,∴α=30°+k·90°,k∈Z,又∵0°<α<180°,∴当k=1时,α=120°;当k=0时,α=30°.
15.角α与角β的终边关于y轴对称,则α与β的关系为A.α+β=k·360°,k∈ZB.α+β=180°+k·360°,k∈ZC.α-β=180°+k·360°,k∈ZD.α-β=k·360°,k∈Z
方法一 (特值法)令α=30°,β=150°,则α+β=180°.方法二 (直接法)因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=180°+k·360°,k∈Z.
∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z).∴180°+2k·360°<2α<360°+2k·360°(k∈Z),∴2α的终边位于第三或第四象限,或在y轴的非正半轴上.
方法二 将坐标系的每个象限二等分,得到8个区域.自x轴正向按逆时针方向把每个区域依次标上Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图所示.
新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷: 这是一份新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷,文件包含模块综合试卷pptx、模块综合试卷docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
2021学年5.1 任意角和弧度制背景图课件ppt: 这是一份2021学年5.1 任意角和弧度制背景图课件ppt,文件包含551第2课时两角和与差的正弦余弦公式pptx、551第2课时两角和与差的正弦余弦公式docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
数学必修 第一册5.6 函数 y=Asin( ωx + φ)教案配套ppt课件: 这是一份数学必修 第一册5.6 函数 y=Asin( ωx + φ)教案配套ppt课件,文件包含443不同函数增长的差异pptx、443不同函数增长的差异docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。