新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷 (一)
展开章末检测试卷(一)
第一章 空间向量与立体几何
(时间:120分钟 满分:150分)
一、单项选择题(本题共8小题,每小题5分,共40分)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
若向量a,b,c共面,则c=xa+yb,其中x,y∈R,即(1,3,λ)=(2x,-x,3x)+(-y,4y,-2y)=(2x-y,-x+4y,3x-2y),
2.已知a=(2,-1,3),b=(-1,4,-2),c=(1,3,λ),若a,b,c三向量共面,则实数λ等于A.1 B.2 C.3 D.4
√
16
17
18
19
20
21
22
3.若向量a=(x,4,5),b=(1,-2,2),且a与b的夹角的余弦值为 ,则x等于A.3 B.-3 C.-11 D.3或-11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
解得x=3或x=-11(舍去).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
√
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
5.已知空间向量a=(1,n,2),b=(-2,1,2),若2a-b与b垂直,则|a|等于
√
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
因为a=(1,n,2),b=(-2,1,2),所以2a-b=(4,2n-1,2).因为2a-b与b垂直,所以(2a-b)·b=0,所以-8+2n-1+4=0,
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
√
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
因为点D在平面Oyz内,所以点D的横坐标为0,又BC=4,原点O是BC的中点,∠BDC=90°,∠DCB=30°,
纵坐标y=-(2-4·sin 30°·cos 60°)=-1,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
7.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为
16
17
18
19
20
21
22
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
依题意,以A为坐标原点,分别以AB,AD,AP所在直线为x,y,z轴建立如图所示的空间直角坐标系,因为AB=BC=2,AD=3,PA=2,则P(0,0,2),B(2,0,0),C(2,2,0),D(0,3,0),
设平面PCD的法向量为n=(a,b,c),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
不妨取c=3,则a=1,b=2,所以平面PCD的一个法向量为n=(1,2,3),所以PB与平面PCD所成角的正弦值为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
8.如图,已知已知四棱锥P-ABCD,底面是边长为2的正方形,△PAD是以AD为斜边的等腰直角三角形,AB⊥平面PAD,点E是线段PD上的动点(不含端点),若线段AB上存在点F(不含端点),使得异面直线PA与EF成30°的角,则线段PE长的取值范围是
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
由△PAD是以AD为斜边的等腰直角三角形,AB⊥平面PAD,底面ABCD为正方形,取AD的中点G,建立如图所示的空间直角坐标系,则G(0,0,0),A(1,0,0),D(-1,0,0),B(1,2,0),P(0,0,1),设F(1,y,0),0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
二、多项选择题(本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分)
16
17
18
19
20
21
22
√
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
故点P的坐标为(4,-2,2)或(-2,2,4).
10.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,DB的中点,则下列选项中正确的是A.EF∥平面ABC1D1B.EF⊥B1CC.EF与AD1所成角为60°D.EF与平面BB1C1C所成角的正弦值为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
√
√
16
17
18
19
20
21
22
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
连接BD1(图略),∴EF∥BD1,得EF∥平面ABC1D1,故A正确;∵B1C⊥BC1,又由D1C1⊥平面BCC1B1,得B1C⊥D1C1,又BC1∩D1C1=C1,BC1,D1C1⊂平面BD1C1,∴B1C⊥平面BD1C1.∵BD1⊂平面BD1C1,∴B1C⊥BD1.又∵BD1∥EF,∴EF⊥B1C,故B正确;
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
11.如图所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点E在棱AA1上,要使CE⊥平面B1DE,则AE的值可能是
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
√
√
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
由CE⊥平面B1DE,得CE⊥DE,CE⊥B1E,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
解得z=a或z=2a,即AE=a或AE=2a.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
12.将正方形ABCD沿对角线BD翻折,使平面ABD与平面BCD的夹角为90°,以下四个结论正确的是A.AC⊥BDB.△ACD是等边三角形C.直线AB与平面BCD所成的角为D.AB与CD所成的角为
16
17
18
19
20
21
22
√
√
√
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
如图所示,以BD的中点O为坐标原点,OD,OA,OC所在直线分别为x轴、y轴、z轴,建立空间直角坐标系Oxyz,
则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
因为异面直线所成的角为锐角或直角,所以AB与CD所成的角为 ,故D正确.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
三、填空题(本大题共4小题,每小题5分,共20分)13.已知a=(-2,1,3),b=(-1,2,1),a与b夹角的余弦值为_____.
16
17
18
19
20
21
22
∵a=(-2,1,3),b=(-1,2,1),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14.将正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,异面直线AD与BC所成的角为____.
16
17
18
19
20
21
22
根据题意可知,当VD-ABC最大时,平面DAC⊥平面ABC,设AC的中点为O,连接OB,OD建立空间直角坐标系,如图所示,令OB=OC=OD=1,则O(0,0,0),A(0,-1,0),D(0,0,1),B(1,0,0),C(0,1,0),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
15.如图所示,在直平行六面体ABCD-A1B1C1D1中,BD⊥DC,BD=DC=1,点E在AA1上,且AE= AA1= ,则点B到平面EDC1的距离为_____.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
建立如图所示的空间直角坐标系,
设平面EDC1的法向量为n=(x,y,z),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
16.如图,正方形ABCD,ABEF的边长都是1,而且平面ABCD,ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(01
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
建立空间直角坐标系如图,则A(1,0,0),F(1,1,0),C(0,0,1).因为CM=BN=a(01
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
四、解答题(本大题共6小题,共70分)17.(10分)已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:(1)a,b,c;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
解得x=2,y=-4,则a=(2,4,1),b=(-2,-4,-1).又b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).
(2)a+c与b+c夹角的余弦值.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
由(1)得a+c=(5,2,3),b+c=(1,-6,1),设a+c与b+c的夹角为θ,
18.(12分)如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,CD∥AB,∠ABC=∠BCD=90°,AB=4,CD=1,点M在PB上,且PB=4PM,∠PBC=30°,求证:CM∥平面PAD.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
建立如图所示的空间直角坐标系Cxyz,∵∠PBC=30°,PC=2,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
设平面PAD的一个法向量为n=(x,y,z),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19.(12分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM∥平面ADEF;
以D为原点, 分别为x轴、y轴、z轴的正方向建立如图所示的空间直角坐标系.则D(0,0,0),A(2,0,0),B(2,2,0),C(0,4,0),E(0,0,2),F(2,0,2).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AD⊥ED,ED⊂平面ADEF,∴ED⊥平面ABCD.
∵M为EC的中点,∴M(0,2,1),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
又BM⊄平面ADEF,∴BM∥平面ADEF.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(2)求证:BC⊥平面BDE.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
又DE∩DB=D,DE,DB⊂平面BDE,
∴BC⊥平面BDE.
20.(12分)在三棱柱ABC-A1B1C1中,底面ABC为正三角形,且侧棱AA1⊥底面ABC,且底面边长与侧棱长都等于2,O,O1分别为AC,A1C1的中点,求平面AB1O1与平面BC1O间的距离.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
如图,连接OO1,根据题意,OO1⊥底面ABC,则以O为原点,分别以OB,OC,OO1所在的直线为x,y,z轴建立空间直角坐标系.∵AO1∥OC1,OB∥O1B1,AO1∩O1B1=O1,OC1∩OB=O,∴平面AB1O1∥平面BC1O.∴平面AB1O1与平面BC1O间的距离即为点O1到平面BC1O的距离.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
设n=(x,y,z)为平面BC1O的法向量,
∴可取n=(0,2,-1).点O1到平面BC1O的距离记为d,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
21.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)求证:BE⊥DC;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(2)若F为棱PC上一点,满足BF⊥AC,求平面FAB与平面ABP夹角的余弦值.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
设n1=(x,y,z)为平面FAB的法向量,
不妨令z=1,可得n1=(0,-3,1)为平面FAB的一个法向量.易知向量n2=(0,1,0)为平面ABP的一个法向量,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22.(12分)如图,在四棱锥S-ABCD中,∠DAB=∠ADC=2∠ABD=2∠BCD=90°,CB=BD=2 ,SB=SD= ,SD⊥BC.(1)求证:平面SBD⊥平面SBC;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
因为CB=BD,2∠BCD=90°,故∠CBD=90°,所以BC⊥BD.又SD⊥BC,SD∩BD=D,SD,BD⊂平面SBD,所以BC⊥平面SBD.因为BC⊂平面SBC,所以平面SBD⊥平面SBC.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
由(1)可得,平面ABCD⊥平面SBD,设E为BD的中点,连接SE,因为SB=SD= ,所以SE⊥BD,故SE⊥平面ABCD.如图,建立空间直角坐标系Axyz,则A(0,0,0),B(0,2,0),C(2,4,0),S(1,1,2).
设n=(x,y,z)为平面ABP的法向量,
不妨取n=(2λ,0,λ-2).因为平面SBD与平面ABP的夹角为60°,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(二): 这是一份新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(二),文件包含章末检测试卷二pptx、章末检测试卷二docx等2份课件配套教学资源,其中PPT共39页, 欢迎下载使用。
新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(三): 这是一份新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(三),文件包含章末检测试卷三pptx、章末检测试卷三docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(四): 这是一份新教材人教A版步步高学习笔记【学案+同步课件】章末检测试卷(四),文件包含章末检测试卷四pptx、章末检测试卷四docx等2份课件配套教学资源,其中PPT共35页, 欢迎下载使用。