终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版)

    立即下载
    加入资料篮
    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版)第1页
    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版)第2页
    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版)第3页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版)

    展开

    这是一份2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)(Word解析版),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2021-2022学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(6月份)  I卷(选择题) 一、选择题(本大题共10小题,共30分。在每小题列出的选项中,选出符合题目的一项)下列各曲线中,表示的函数的是(    )A.  B.
    C.  D. 下列计算正确的是(    )A.  B.
    C.  D. 下列性质中,矩形具有、正方形也具有、但是菱形却不具有的性质是(    )A. 对角线互相垂直 B. 对角线互相平分
    C. 对角线长度相等 D. 一组对角线平分一组对角对于函数,下列结论正确的是(    )A. 它的图象必经过点 B. 它的图象不经过第三象限
    C. 时, D. 的增大而增大如图,点中斜边不与重合上一动点,分别作于点,作于点,点的中点,若,当点上运动时,则的最小值是(    )A.  B.  C.  D. 如图,在面积为的菱形中,点沿的路径移动,设点经过的路径长为的面积为,则下列图象能大致反映的函数关系的是(    )A.  B.
    C.  D. 如图,在矩形中,平分于点分别是的中点,则的长为(    )A.
    B.
    C.
    D. 若点在一次函数的图象上,则的大小关系是(    )A.  B.  C.  D. 函数,当,对应的取值范围为,则的取值范围为(    )A.  B.  C.  D. 如图,已知直线轴于两点,以为边作等边三点逆时针排列两点坐标分别为,连接,则的最小值为(    )
    A.  B.  C.  D. II卷(非选择题) 二、填空题(本大题共6小题,共18分)函数中,自变量的取值范围为______关于的正比例函数,则的值为______将直线向左平移个单位再向上平移个单位长度后,所得的直线的表达式为______在探索数学名题尺规三等分角的过程中,有下面的问题:如图是平行四边形的对角线,点上,,则的大小是______
    在平面直角坐标系中,一次函数的图象如图所示,则关于的一元一次不等式的解集是______
    正方形的边长为,点为边上一点,,点为正方形内一动点且,过点作的垂线交的延长线于点,连接,则的最大值为______
       三、解答题(本大题共8小题,共72分。解答应写出文字说明,证明过程或演算步骤)本小题
    计算:

    本小题
    一次函数的图象经过点
    求函数解析式;
    直接写出不等式的解集.本小题
    如图,是正方形的对角线上的两点,且
    求证:四边形是菱形;
    若正方形边长为,直接写出菱形的面积______
    本小题
    在平面直角坐标系中,直线分别交轴,轴于点
    ,自变量的取值范围是______直接写出结果
    在直线上.
    直接写出的值为______
    点作轴于点,求直线的解析式.
    本小题
    如图,在的正方形网格中,每个小正方形的顶点称为格点,如图点均为格点请用无刻度的直尺完成下列作图画图过程用虚线,结果用实线
    如图,过点作直线的平行线;
    如图,点为线段上一动点,连接,作出当最小时,点位置;
    如图,在线段上找一点不与点重合,使得
     
    本小题
    一列快车从甲地驶往乙地,一列慢车沿同一条公路从乙地驶往甲地,两车同时出发,设慢车行驶的时间为单位:,两车之间的距离为单位:,图中的折线表示之间的函数关系.根据图象解答下列问题:
    甲、乙两地之间的距离为______
    请解释图中点的实际意义;
    求慢车和快车的速度
    若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?
    本小题
    已知正方形的边长为分别为边上两点.
    如图,若,求证:
    如图,若,作,连接,求证:
    如图,若,点在边上满足,则长度为______直接写出答案
     
    本小题
    如图,直线分别交轴、轴于两点,直线分别交轴、轴于,交于点
    直接写出坐标__________________
    如图,若,求点的坐标;
    如图,在的条件下,过点关于轴的对称点轴的垂线交直线于点,连接,求证:
     

    答案和解析 1.【答案】 【解析】解:根据函数的意义可知:对于自变量的任何值,都有唯一的值与之相对应,所以B正确.
    故选:
    根据函数的意义即可求出答案.
    本题主要考查了函数图象的读图能力和函数概念.函数的意义反映在图象上简单的判断方法是:作垂直于轴的直线在左右平移的过程中与函数图象只会有一个交点.
     2.【答案】 【解析】解:不是同类二次根式,故不能合并,故A不符合题意.
    B、原式,故B符合题意.
    C、原式,故C不符合题意.
    D、原式,故D不符合题意.
    故选:
    根据二次根式的加减运算法则以及乘除运算法则即可求出答案.
    本题考查二次根式,解题的关键是熟练运用二次根式的加减运算以及乘除运算,本题属于基础题型.
     3.【答案】 【解析】解:菱形具有的性质是:两组对边分别平行,对角线互相平分,对角线互相垂直;
    矩形具有的性质是:两组对边分别平行,对角线互相平分,对角线相等;
    正方形具有菱形和矩形的性质,
    菱形不具有的性质为:对角线相等,
    故选:
    利用正方形的性质,矩形的性质,菱形的性质依次判断可求解.
    本题考查了正方形的性质,菱形的性质,矩形的性质,注意熟记定理是解此题的关键.
     4.【答案】 【解析】解:、当,点不在函数的图象上,所以选项错误;
    B、函数经过第一、二、四象限,所以选项正确;
    C、当时,,则,所以选项错误;
    D、因为,则的值随值的增大而减小,所以选项错误.
    故选:
    利用一次函数图象上点的坐标特征对进行判断;根据一次函数的性质对进行判断.
    本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.
     5.【答案】 【解析】解:连接,如图所示:
    于点于点
    四边形是矩形,
    互相平分,
    的中点,

    时,最小


    故选:
    证四边形是矩形,得,由勾股定理求出,当时,最小,然后由面积法求出的最小值,即可解决问题.
    本题考查了矩形的判定与性质、垂线段最短、勾股定理以及面积法等知识;熟练掌握矩形的判定与性质是解题的关键.
     6.【答案】 【解析】解:点沿运动,的面积逐渐变大,
    沿移动,的面积不变,且此时的面积等于菱形面积的一半,即等于
    沿的路径移动,的面积逐渐减小.
    所以符合题意的选项是
    故选:
    分三段来考虑点沿运动,的面积逐渐变大;点沿移动,的面积不变;点沿的路径移动,的面积逐渐减小,据此选择即可.
    本题主要考查了动点问题的函数图象.注意分段考虑.
     7.【答案】 【解析】解:连接,如图所示:
    四边形是矩形,


    平分





    分别为的中点,
    的中位线,

    故选:
    连接,由矩形的性质和角平分线的性质可得,可得,由勾股定理可求的长,由三角形中位线定理可求的长.
    本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出的长度是解题的关键.
     8.【答案】 【解析】解:
    随着的增大而减小,


    故选:
    根据一次函数的性质和一次函数的增减性,结合函数的纵坐标,即可得到答案.
    本题考查了一次函数的增减性,一次函数图象上点的坐标特征,解题的关键是通过得知函数值的增大而减小.
     9.【答案】 【解析】解:画出函数图象如图所示.

    代入
    解得
    代入
    解得
    ,对应的取值范围为
    由图可知
    故选:
    求得函数值为时的的值,根据图象即可求得的取值.
    本题考查了一次函数的图象和性质,一次函数图象上点的坐标特征,数形结合是解题的关键.
     10.【答案】 【解析】解:在直线上,





    轴上方作等边

    ,即



    的轨迹为定直线
    作点关于直线的对称点,连接

    当点在同一条直线上时,的值最小,

    ,即
    的最小值

    故选:
    轴上方作等边,证明,所以点的轨迹为定直线,作点关于直线的对称点,连接,当点在同一条直线上时,的值最小,再根据勾股定理,即可解答.
    本题考查最短路径,勾股定理,轴对称等知识点,解题关键是熟练掌握以上知识点、根据条件好问题作出辅助线.
     11.【答案】 【解析】解:根据题意得
    解得:
    故答案是:
    根据二次根式有意义的条件:被开方数是非负数,据此即可求解.
    本题考查了函数自变量的取值范围,初中范围内一般要考虑三种情况:、分母不等于、二次根式被开方数是非负数;次幂或负指数次幂无意义.
     12.【答案】 【解析】解:由题意得:
    解得:
    故答案为:
    根据正比例函数定义可得,再解即可.
    此题主要考查了正比例函数的定义,正确把握正比例函数的定义是解题的关键.
     13.【答案】 【解析】解:将直线向左平移个单位再向上平移个单位长度后,所得的直线的表达式为
    故答案为:
    根据平移的性质左加右减,上加下减,即可找出平移后的直线解析式,此题得解.
    本题考查了一次函数图象与几何变换,牢记平移的规则左加右减,上加下减是解题的关键.
     14.【答案】 【解析】解:


    四边形是平行四边形,






    故答案为:
    由等腰三角形的性质和外角的性质可求的度数,即可求解.
    本题考查了平行四边形的性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
     15.【答案】 【解析】解:由得到:
    根据图象可知:两函数的交点为
    所以关于的一元一次不等式的解集是,即关于的一元一次不等式的解集是
    故答案为:
    写出直线在直线上方所对应的自变量的范围即可.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量的取值范围;从函数图象的角度看,就是确定直线轴上或下方部分所有的点的横坐标所构成的集合.
     16.【答案】 【解析】解:如图,连接,设交于点,过点于点

    四边形是正方形,












    垂直平分线段










    的最大值为
    故答案为:
    如图,连接,设交于点,过点于点求出,根,可得结论.
    本题考查正方形的性质,直接选举是斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.
     17.【答案】解:



     【解析】先化简,然后合并同类二次根式即可;
    根据二次根式的乘除法和加法可以解答本题.
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
     18.【答案】解:根据题意得
    解得
    一次函数解析式为

    的增大而减小,
    ,则,解得
    时,
    不等式的解集为 【解析】利用待定系数法求得即可;
    求得直线与轴的交点,利用一次函数的性质即可得到不等式的解集.
    本题考查了待定系数法求一次函数解析式,一次函数与不等式的关系,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.
     19.【答案】 【解析】证明:连接,交于点

    四边形是正方形,





    四边形是平行四边形,

    四边形是菱形;
    四边形是正方形,





    菱形的面积
    故答案为:
    连接,根据对角线互相平分证出四边形为平行四边形,再根据对角线互相垂直证出四边形是菱形;
    根据勾股定理求出正方形对角线的长,再求出菱形的对角线的长,根据菱形的面积公式对角线乘积的一半,求出菱形的面积.
    本题考查了正方形的性质,菱形的判定,菱形的面积,解题的关键是连接,根据对角线互相平分证明四边形是平行四边形.
     20.【答案】   【解析】解:时,,解得,则
    时,,则
    ,自变量的取值范围是
    代入,解得
    故答案为

    设直线的解析式为
    代入得,解得
    直线的解析式为
    先利用直线确定的坐标,然后利用一次函数的性质求解;
    代入可求出的值;
    利用两直线垂直,一次项系数互为负倒数可设直线的解析式为,然后把代入求出即可.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量的值及与它对应的函数值的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
     21.【答案】解:如图中,直线即为所求;
    如图中,点即为所求;
    如图中,点即为所求.
     【解析】取格点,作直线即可;
    作点关于的对称点,连接于点,连接,点即为所求;
    取格点,连接于点,连接于点,点即为所求可以证明是等腰直角三角形
    本题考查作图应用与设计作图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
     22.【答案】 【解析】解:时,
    甲、乙两地之间的距离为千米.
    故答案为:
    图中点的实际意义是当两车出发小时时,慢车和快车相遇.
    慢车的速度为千米小时
    快车的速度为千米小时
    设第二列快车比第一列快车晚出发小时,则第二列快车与慢车相遇时,慢车行驶了小时、第二列快车行驶了小时,
    根据题意得:
    解得:
    答:第二列快车比第一列快车晚出发小时.
    由点的坐标即可得出甲、乙两地之间的距离;
    由点的坐标结合题意,即可得出点的实际意义;
    由慢车的速度甲、乙两地之间的距离慢车到达甲地的时间,即可求出慢车的速度;由快车的速度甲、乙两地之间的距离两车相遇的时间慢车的速度,即可求出快车的速度;
    设第二列快车比第一列快车晚出发小时,则第二列快车与慢车相遇时,慢车行驶了小时、第二列快车行驶了小时,根据路程速度时间,即可得出关于的一元一次方程,解之即可得出结论.
    本题考查了一次函数的应用以及一元一次方程的应用,解题的关键是:根据点的坐标找出甲、乙两地之间的距离;根据题意说出点的实际意义;根据速度路程时间,列式计算;找准等量关系,正确列出一元一次方程.
     23.【答案】 【解析】证明:四边形是正方形,




    证明:如图,延长的延长线于

    四边形是正方形,











    解:如图,当点离点较近时,过点


    四边形是平行四边形,









    如图,当点离点较近时,过点


    四边形是平行四边形,








    综上所述:的长为
    故答案为:
    可证,证
    可证,可得,由直角三角形的性质可得结论;
    分两种情况讨论,由全等三角形的性质和平行三角形的性质可求解.
    本题是四边形综合题,考查了全等三角形的性质,正方形的性质,平行四边形的判定和性质,直角三角形的性质,添加恰当的辅助线构造全等三角形是解题的关键.
     24.【答案】     【解析】解:对于,令,解得,令,则
    对于,令,则

    故答案为:
    解:过点作直线于点,过点作直线于点

    ,则
    为等腰直角三角形,

    由点的坐标知,





    故点的坐标为
    由点得,直线的表达式为

    直线的表达式为
    ,解得

    证明:由得:

    关于轴的对称点为








    ,可得
    过点作直线于点,过点作直线于点,证明,得,即可得点的坐标为,直线的表达式为,从而直线的表达式为,可得点
    ,又点关于轴的对称点为,得,又,即得,而,故EF
    本题考查一次函数的综合应用,涉及待定系数法,三角形全等的判定与性质,一次函数图象上点坐标的特征等,解题的关键是掌握作辅助线,利用条件
     

    相关试卷

    2023-2024学年湖北省武汉市江夏区华一寄宿学校八年级(下)期中数学试卷(含解析):

    这是一份2023-2024学年湖北省武汉市江夏区华一寄宿学校八年级(下)期中数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖北省武汉市江夏区华一寄宿学校九年级(上)月考数学试卷(9月份)(含答案解析):

    这是一份2022-2023学年湖北省武汉市江夏区华一寄宿学校九年级(上)月考数学试卷(9月份)(含答案解析),共34页。

    2020-2021学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(3月份):

    这是一份2020-2021学年湖北省武汉市江夏区华一寄宿学校八年级(下)月考数学试卷(3月份),共30页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map