浙教版1.1 二次函数获奖教学复习ppt课件
展开形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项.
关于y轴对称,对称轴是直线x=0
顶点坐标是原点(0,0)
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减在对称轴右侧递增
在对称轴左侧递增在对称轴右侧递减
2.二次函数的图象与性质
a>0 开口向上
a < 0 开口向下
在对称轴左边,x↗ y↘;在对称轴右边, x↗ y↗
在对称轴左边,x↗ y↗;在对称轴右边, x↗ y↘
3.二次函数图像的平移
4.二次函数y=ax2+bx+c的图象与a、b、c的关系
5.二次函数表达式的求法
6.二次函数与一元二次方程的关系
1.二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题); (2)利用二次函数的图像求一元二次方程的近似解.
2.一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.
【例1】 抛物线y=x2-2x+3的顶点坐标为________.
【解析】方法一:配方,得y=x2-2x+3=(x-1)2+2,则顶点坐标为(1,2).方法二代入公式 , ,则顶点坐标为(1,2).
【点睛】解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.
对于y=2(x-3)2+2的图像下列叙述正确的是( )A.顶点坐标为(-3,2) B.对称轴为y=3C.当x≥3时,y随x的增大而增大 D.当x≥3时,y随x的增大而减小
【例2】二次函数y=-x2+bx+c的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1
【解析】由图像看出,抛物线开口向下,对称轴是x=1,当x<1时,y随x的增大而增大.∵x1
【例3】已知二次函数y=ax2+bx+c的图像如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4
解析:由图像开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图像与y轴交于正半轴可得 c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图像上横坐标为 x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图像上横坐标为x=1的点在第四象限得出a+b+c<0,由图像上横坐标为x=-1的点在第二象限得出 a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.故选D.
【点睛】1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”. 2.当x=1时,函数y=a+b+c.当图像上横坐标x=1的点在x轴上方时,a+b+c>0;当图像上横坐标x=1的点在x轴上时,a+b+c=0;当图像上横坐标x=1的点在x轴下方时,a+b+c<0.同理,可由图像上横坐标x=-1的点判断a-b+c的符号.
1.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( ) A.b≥-1 B.b≤-1 C.b≥1 D.b≤1
解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2+2bx+c的对称轴 ,即b≤1,故选择D .
2.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c= -9a;④若(-3,y1),( ,y2)是抛物线上两点,则y1>y2.其中正确的是( )
A.①②③ B.①③④ C.①②④ D.②③④
【例4】将抛物线y=x2-6x+5向上平移 2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6 B.y=(x-4)2-2C.y=(x-2)2-2 D.y=(x-1)2-3
【解析】因为y=x2-6x+5=(x-3)2-4,所以向上平移2个单位长度,再向右平移1个单位长度后,得到的解析式为y=(x-3-1)2-4+2,即y= (x-4)2-2.故选B.
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可能( )A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位
【例5】已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.
解:设所求的二次函数为y=ax2+bx+c, 由题意得:
解得, a=2,b=-3,c=5.
∴ 所求的二次函数为y=2x2-3x+5.
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的表达式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同 a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5)所以其表达式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5
【例6】若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=7
解析:∵二次函数y=x2+mx的对称轴是x=3, ∴ =3,解得m=-6, ∴关于x的方程x2+mx=7可化为x2-6x-7=0, 即(x+1)(x-7)=0,解得x1=-1,x2=7.故选D.
1.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= ;
2.一元二次方程 3x2+x-10=0的两个根是x1=-2 ,x2= ,那么二次函数 y= 3x2+x-10与x轴的交点坐标是 .
【例7】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
解得k=-1,b=120.故所求一次函数的表达式为y=-x+120.
(2)W=(x-60)•(-x+120)=-x2+180x-7200=-(x-90)2+900,
∵抛物线的开口向下, ∴当x<90时,W随x的增大而增大,而60≤x≤60×(1+45%),即60≤x≤87,∴当x=87时,W有最大值,此时W=-(87-90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析.
(2) y=-x2+14x=-(x-7)2+49.即当x=7时,利润最大,y=49(万元)
(3) 没有利润,即y=-x2+14x=0.解得x1=0(舍去)或x2=14,而这时利润为滑坡状态,所以第15个月,公司亏损.
解:(1)由题意,得EF=AE=DE=BC=x,AB=30.∴BF=2x-30.
(2)∵∠F=∠A=45°,∠CBF-=∠ABC=90°,∴∠BGF=∠F=45°,BG=BF=2x-30.所以S△DEF-S△GBF= DE2- BF2= x2- (2x-30)2= x2+60x-450.
张大伯准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.
浙教版九年级上册4.3 相似三角形优质教学复习课件ppt: 这是一份浙教版九年级上册4.3 相似三角形优质教学复习课件ppt,共40页。PPT课件主要包含了知识网络,知识梳理,2相似多边形,图形的相似,符号语言,1测高,2测距,考点解析,针对练习,考点二黄金分割等内容,欢迎下载使用。
浙教版九年级上册第2章 简单事件的概率2.2 简单事件的概率试讲课教学复习ppt课件: 这是一份浙教版九年级上册第2章 简单事件的概率2.2 简单事件的概率试讲课教学复习ppt课件,共26页。PPT课件主要包含了知识网络,确定事件,随机事件,必然事件,不可能事件,知识梳理,概率的概念,概率的值,列表法,树形图的画法等内容,欢迎下载使用。
数学九年级上册1.1 二次函数评优课教学课件ppt: 这是一份数学九年级上册1.1 二次函数评优课教学课件ppt,共21页。PPT课件主要包含了学习目标,知识精讲,y2x2+1,y2x2,y2x2-1,抛物线,0-1,y-1,y随x增大而增大,y随x增大而减小等内容,欢迎下载使用。