初中人教版24.1.3 弧、弦、圆心角优秀练习
展开2022-2023年人教版数学九年级上册24.1.3
《弧、弦、圆心角》课时练习
一 、选择题
1.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75° B.70° C.65° D.35°
2.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54° B.64° C.27° D.37°
3.下列语句中正确的是( )
A.长度相等的两条弧是等弧
B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等
D.经过圆心的每一条直线都是圆的对称轴
4.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )
A.60° B.70° C.120° D.140°
6.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是( )
A.30° B.45° C.60° D.75°
7.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A.25° B.50° C.60° D.80°
8.如图,▱ABCD的顶点A.B.D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,
连接AE,则∠AEB的度数为( )
A.36° B.46° C.27° D.63°
9.如图,在⊙O中,若C是弧BD的中点,则图中与∠BAC相等的角有( )
A.1个 B.2 个 C.3个 D.4个
10.如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于( )
A.15° B.20° C.25° D.30°
11.如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
A.25° B.35° C.55° D.70°
12.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( )
A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD
二 、填空题
13.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B= 度.
14.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC,若∠BOC与∠BAC互补,则弦BC的长为_________.
15.如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,
则∠ADC的度数为 .
16.如图,AC是⊙O的直径,∠1=46°,∠2=28°,则∠BCD=______.
17.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为 .
18.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为 .
三 、解答题
19.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:AD=CE.
20.如图所示,已知△ABC内接于⊙O,AB=AC,∠BOC=120°,延长BO交⊙O于D点.
(1)试求∠BAD的度数;
(2)求证:△ABC为等边三角形.
21.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
22.如图,已知点A,B,C,D均在⊙O上,CD为∠ACE的平分线.
(1)求证:△ABD为等腰三角形;
(2)若∠DCE=45°,BD=6,求⊙O的半径.
23.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小
参考答案
1.B.
2.C.
3.D
4.B
5.D
6.C
7.B.
8.A.
9.C
10.D
11.B
12.C.
13.答案为:60.
14.答案为:2;
15.答案为:110°
16.答案为:72°
17.答案为:50°
18.答案为:60°.
19.证明:如图,∵AB∥CE,
∴∠ACE=∠BAC.
又∵AC平分∠BAD,
∴∠BAC=∠DAC,
∴∠C=∠CAD,
∴=,
∴+=+,
∴=,
∴AD=CE.
20.解:(1)∵BD是⊙O的直径,
∴∠BAD=90°(直径所对的圆周角是直角).
(2)证明:∵∠BOC=120°,
∴∠BAC=∠BOC=60°.
又∵AB=AC,
∴△ABC是等边三角形.
21.解:(1)∵BC=DC,
∴∠CBD=∠CDB=39°,
∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,
∴∠BAD=∠BAC+∠CAD=39°+39°=78°;
(2)证明:∵EC=BC,
∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,
∴∠2+∠BAE=∠1+∠CBD,
∵∠BAE=∠CBD,
∴∠1=∠2.
22.解:(1)证明:
∵CD平分∠ECA,
∴∠ECD=∠DCA.
∵∠ECD+∠DCB=180°,∠DCB+∠BAD=180°,
∴∠ECD=∠DAB.
又∵∠DCA=∠DBA,
∴∠DBA=∠DAB.
∴DB=DA.
∴△ABD是等腰三角形.
(2)∵∠DCE=∠DCA=45°,
∴∠ECA=∠ACB=90°.
∴∠BDA=90°.∴AB是直径.
∵BD=AD=6,
∴AB=6.
∴⊙O的半径为3.
23.解:
初中数学人教版九年级上册24.1.1 圆精品课时作业: 这是一份初中数学人教版九年级上册24.1.1 圆精品课时作业,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.3 弧、弦、圆心角一课一练: 这是一份人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.3 弧、弦、圆心角一课一练,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册24.1.3 弧、弦、圆心角课后练习题: 这是一份初中数学人教版九年级上册24.1.3 弧、弦、圆心角课后练习题,共2页。试卷主要包含了下列命题中,正确的有,下列说法中,正确的是,下列命题中,不正确的是,如果两个圆心角相等,那么,已知,如果两条弦相等,那么等内容,欢迎下载使用。