所属成套资源:人教版数学九年级上学期训练题全册
数学九年级上册24.2.1 点和圆的位置关系精品随堂练习题
展开
这是一份数学九年级上册24.2.1 点和圆的位置关系精品随堂练习题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023年人教版数学九年级上册24.2.1《点和圆的位置关系》课时练习一 、选择题1.下列说法正确的是( )A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为( )A.在圆上 B.在圆外 C.在圆内 D.不确定3.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是( )A.点B在圆内B.点B在圆上 C.点B在圆外D.点B和圆的位置关系不确定 4.如图,在△ABC中,∠C=90°,AB=4,以C点为圆心, 2为半径作⊙C,则AB的中点O与⊙C的位置关系是( ) A.点O在⊙C外 B.点O在⊙C上 C.点O在⊙C内 D.不能确定5.在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为( )A.E,F,G B.F,G,H C.G,H,E D.H,E,F6.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是( )A.3<r<4 B.3<r<5 C.3≤r≤5 D.r>47.三角形的外心是( )A.三条边中线的交点 B.三条边高的交点 C.三条边垂直平分线的交点 D.三个内角平分线的交点8.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有( )A.1个 B.2个 C.3个 D.4个9.在Rt△ABC中,AB=6,BC=8,则这个三角形的外接圆直径为( )A.5 B.10 C.5或4 D.10或810.小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是( ) A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的平分线的交点11.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是( )A.(﹣1,2) B.(1,﹣1) C.(﹣1,1) D.(2,1)12.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是( )A.5 B.6 C.7 D.8二 、填空题13.已知⊙O的半径是3,当OP=2时,点P在⊙O________;当OP=3时,点P在⊙O________;当OP=5时,点P在⊙O________.14.如图所示,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,1为半径画圆,则点O,B,C,D中,点________在圆内,点________在圆上,点________在圆外. 15.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r取值范围是______. 16.如图,在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM为中线,以C为圆心,cm为半径作圆,则A、B、C、M四点在圆外的有______,在圆上的有______,在圆内的有______.17.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是 .18.如图,在△ABC中,BC=3 cm,∠BAC=60°,△ABC能被半径至少为 cm的圆形纸片所覆盖.三 、解答题19.已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由. 20.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径. 21.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由. 22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 . 23.如图,在△ABC中,∠ACB=90°,AB=10,BC=8,CD⊥AB于D,O为AB的中点.(1)以C为圆心,6为半径作圆C,试判断A,D,B与⊙C的位置关系;(2)⊙C的半径为多少时,点O在⊙C上?(3)⊙C的半径为多少时,点D在⊙C上?24.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:PD=PF;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.
参考答案1.B2.C3.C.4.D;5.A6.D.7.B.8.C.9.D10.B.11.C.12.D.13.答案为:内 上 外14.答案为:O B,D C15.答案为:3<r<516.答案为:点B; 点M; 点A、C.17.答案为:4≤OP≤5.18.答案为:.19.解:(1)当d=4 cm时,∵d<r,∴点P在圆内;(2)当d=5 cm时,∵d=r,∴点P在圆上;(3)当d=6 cm时,∵d>r,∴点P在圆外.20.解:如图,作AD⊥BC,垂足为D,则O一定在AD上,所以AD=8;设OA=r,OB2=OD2+BD2,即r2=(8﹣r)2+62,解得r=.答:△ABC外接圆的半径为. 21.(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.22.解:(1)①平面直角坐标系如图所示:②圆心点D,如图所示;(2)⊙D的半径=AD==2,∵点(6,﹣2)到圆心D的距离==2=半径,∴点(6,﹣2)在⊙D上.观察图象可知:∠ADC=90°,故答案为:2,上,90°.23.解:(1)∵CA=6,CD=<6,CB=8>6,∴点A在⊙C上,点D在⊙C内,点B在⊙C外(2)∵OC=AB=5,∴⊙C的半径为5时,点O在⊙C上(3)∵CD=,∴⊙C的半径为时,点D在⊙C上24.(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,∵AB是⊙O的直径,DE⊥AB,∴∠ADB=∠AED=90°,∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,∴∠ADE=∠DBA,∴∠DAC=∠ADE,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠DFA+∠DAC=90°,又∵∠ADE=∠DAP,∴∠PDF=∠PFD,∴PD=PF;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.
相关试卷
这是一份初中数学人教版九年级上册24.1.1 圆精品练习题,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系课后复习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学人教版24.2.1 点和圆的位置关系同步训练题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。