北京市景山校2022年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是( )
A. B. C. D.
2.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )
A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
3.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )
A.a>0 B.a=0 C.c>0 D.c=0
4.设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )
A. B. C. D.
5.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )
A. B.
C. +4=9 D.
6.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
7.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为( )
A.1 B.﹣1 C.±1 D.0
9.下列几何体中,主视图和左视图都是矩形的是( )
A. B. C. D.
10.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为( )
A.55×103 B.5.5×104 C.5.5×105 D.0.55×105
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在△ABC中,∠C=90°,若tanA=,则sinB=______.
12.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .
13.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.
14.如图,若∠1+∠2=180°,∠3=110°,则∠4= .
15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
三、解答题(共8题,共72分)
17.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
18.(8分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
(1)当m=6时,求线段CD的长;
(2)设圆心O1在直线上方,试用n的代数式表示m;
(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.
19.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
20.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
21.(8分)先化简,再求值:,其中满足.
22.(10分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
23.(12分)(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.
(1)求证:直线CD为⊙O的切线;
(2)若AB=5,BC=4,求线段CD的长.
24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用相似三角形的性质即可判断.
【详解】
设AD=x,AE=y,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴,
∴x=9,y=12,
故选:C.
【点睛】
考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、C
【解析】
首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
∴a+b>0,c﹣b<0
∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
故答案为a+c.
故选A.
3、D
【解析】
试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
考点:根的判别式;一元二次方程的定义.
4、C
【解析】
根据不等式的解集为x< 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0
【详解】
解不等式,
移项得:
∵解集为x<
∴ ,且a<0
∴b=-5a>0,
解不等式,
移项得:bx>a
两边同时除以b得:x>,
即x>-
故选C
【点睛】
此题考查解一元一次不等式,掌握运算法则是解题关键
5、A
【解析】
根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
【详解】
∵轮船在静水中的速度为x千米/时,
∴顺流航行时间为:,逆流航行时间为:,
∴可得出方程:,
故选:A.
【点睛】
本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
6、A
【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
7、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
8、B
【解析】
根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
【详解】
解:把x=0代入方程得:a2﹣1=0,
解得:a=±1,
∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
∴a﹣1≠0,
即a≠1,
∴a的值是﹣1.
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.
9、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,
所以,55000用科学记数法表示为5.5×104,
故选B.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
12、.
【解析】
试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.
考点:扇形的面积计算.
13、1
【解析】
先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.
【详解】
解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,
∴AC==1,
∴点C的坐标为(﹣1,1).
当y=﹣2x﹣6=1时,x=﹣5,
∵﹣1﹣(﹣5)=1,
∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.
故答案为1.
【点睛】
本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.
14、110°.
【解析】
解:∵∠1+∠2=180°,
∴a∥b,∴∠3=∠4,
又∵∠3=110°,∴∠4=110°.
故答案为110°.
15、3.
【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
【详解】
∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD,
∵DE⊥AC,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
∴∠ADE=∠ACD,
∴tan∠ACD=tan∠ADE==,
设AD=4k,CD=3k,则AC=5k,
∴5k=5,
∴k=1,
∴CD=AB=3,
故答案为3.
【点睛】
本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
16、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
三、解答题(共8题,共72分)
17、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
【解析】
分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
∴抛物线的解析式为y=x2﹣4x+1.
(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
(1)联结CE.
∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
同理,得点;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
综上所述:满足条件的点有),.
点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
18、 (1)CD=;(2)m= ;(3) n的值为或
【解析】
分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
(2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
(3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
详解:(1)过点作⊥,垂足为点,连接.
在Rt△,∴.
∵=6,∴.
由勾股定理得: .
∵⊥,∴.
(2)在Rt△,∴.
在Rt△中,.
在Rt△中,.
可得: ,解得.
(3)△成为等腰三角形可分以下几种情况:
① 当圆心、在弦异侧时
i),即,由,解得.
即圆心距等于、的半径的和,就有、外切不合题意舍去.
ii),由 ,
解得:,即 ,解得.
②当圆心、在弦同侧时,同理可得: .
∵是钝角,∴只能是,即,解得.
综上所述:n的值为或.
点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
19、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
20、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
21、,1.
【解析】
原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可.
【详解】
解:原式
∵,
∴,
∴原式
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
22、(1)12;22;12;4;50;(2)详见解析;(3)1.
【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
【详解】
解:(1)填表如下:
体能等级
调整前人数
调整后人数
优秀
8
12
良好
16
22
及格
12
12
不及格
4
4
合计
40
50
故答案为12;22;12;4;50;
(2)补全条形统计图,如图所示:
(3)抽取的学生中体能测试的优秀率为24%,
则该校体能测试为“优秀”的人数为1500×24%=1(人).
【点睛】
本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
23、(1)证明见试题解析;(2).
【解析】
试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.
试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;
(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.
考点:切线的判定.
24、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
2022年北京临川校中考数学模拟精编试卷含解析: 这是一份2022年北京临川校中考数学模拟精编试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角板,计算÷的结果是,的值是,如图,直线与y轴交于点,已知某几何体的三视图等内容,欢迎下载使用。
2022年北京市景山校中考数学考试模拟冲刺卷含解析: 这是一份2022年北京市景山校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了计算-5x2-3x2的结果是等内容,欢迎下载使用。
2022年北京市门头沟区重点名校中考数学模拟精编试卷含解析: 这是一份2022年北京市门头沟区重点名校中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,如图,弹性小球从点P等内容,欢迎下载使用。