亳州市重点中学2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )
A.4.5cm B.5.5cm C.6.5cm D.7cm
2.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是( )
A.S的值增大 B.S的值减小
C.S的值先增大,后减小 D.S的值不变
3.已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:①当的条件下,无论取何值,点是一个定点;②当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;③的最小值不大于;④若,则.其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
5.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是( )
A.①② B.②④ C.②③ D.③④
6.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
7.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?( )
A.在A的左边 B.介于A、B之间
C.介于B、C之间 D.在C的右边
8.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
9.在﹣3,0,4,这四个数中,最大的数是( )
A.﹣3 B.0 C.4 D.
10.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
二、填空题(共7小题,每小题3分,满分21分)
11.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).
12.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.
13.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
14.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k= .
15.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.
16.若反比例函数的图象位于第二、四象限,则的取值范围是__.
17.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.
三、解答题(共7小题,满分69分)
18.(10分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2,m).
(1)求反比例函数的解析式;
(2)求点B到直线OM的距离.
19.(5分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
20.(8分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
(1)求反比例函数y=和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
21.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
22.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
23.(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)将上面的条形统计图补充完整;
(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
24.(14分)解不等式组,并写出该不等式组的最大整数解.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
故选A.
考点:轴对称图形的性质
2、D
【解析】
作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
【详解】
作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
∵S△POB=|k|,∴S=2k,∴S的值为定值.
故选D.
【点睛】
本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
3、C
【解析】
①利用抛物线两点式方程进行判断;
②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;
③利用顶点坐标公式进行解答;
④利用两点间的距离公式进行解答.
【详解】
①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;
②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴该抛物线的对称轴为:x=,无法判定的正负.
故②不一定正确;
③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;
④∵A(1,0),B(-,0),C(0,-1),
∴当AB=AC时,,
解得:a=,故④正确.
综上所述,正确的结论有3个.
故选C.
【点睛】
考查了二次函数与x轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,〔即b=0〕时,P在y轴上;当Δ= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b和二次项系数a共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;(5).常数项c决定抛物线与y轴交点;抛物线与y轴交于(0,c);(6).抛物线与x轴交点个数
Δ= b1-4ac>0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;
Δ= b1-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b1-4ac 乘上虚数i,整个式子除以1a);当a>0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).
4、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
5、D
【解析】
试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
根据客车数列方程,应该为,②错误,③正确;
所以正确的是③④.
故选D.
考点:由实际问题抽象出一元一次方程.
6、C
【解析】
【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率=,
故选C.
【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
7、C
【解析】
分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.
解析:∵|a﹣b|=3,|b﹣c|=5,
∴b=a+3,c=b+5,
∵原点O与A、B的距离分别为1、1,
∴a=±1,b=±1,
∵b=a+3,
∴a=﹣1,b=﹣1,
∵c=b+5,
∴c=1.
∴点O介于B、C点之间.
故选C.
点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.
8、D
【解析】
根据实数的运算法则即可一一判断求解.
【详解】
①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
故选D.
9、C
【解析】
试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,
在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.
10、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
二、填空题(共7小题,每小题3分,满分21分)
11、③④⑤
【解析】
根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.
【详解】
解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①错误,
当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
∴x=2时的函数值与x=0的函数值相等,
∴x=2时,y=4a+2b+c>0,故③正确,
∵x=-1时,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正确,
由图象可知,x=1时,y取得最大值,此时y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正确,
故答案为:③④⑤.
【点睛】
本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
12、×()2
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【详解】
解:∵∠B1C1O=60°,C1O=,
∴B1C1=1,∠D1C1E1=30°,
∵sin∠D1C1E1=,
∴D1E1=,
∵B1C1∥B2C2∥B3C3∥…
∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…
∴B2C2=,B3C3=.
故正方形AnBnCnDn的边长=()n-1.
∴B2018C2018=()2.
∴D2018E2018=×()2,
∴D的纵坐标为×()2,
故答案为×()2.
【点睛】
此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键
13、1.
【解析】
由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
【详解】
∵PA,PB是⊙O是切线,
∴PA=PB.
又∵∠P=46°,
∴∠PAB=∠PBA=.
又∵PA是⊙O是切线,AO为半径,
∴OA⊥AP.
∴∠OAP=90°.
∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
故答案为:1
【点睛】
此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
14、-4.
【解析】
过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.
【详解】
过点B作BD⊥x轴于点D,
∵△AOB是等边三角形,点A的坐标为(﹣4,0),
∴∠AOB=60°,OB=OA=AB=4,
∴OD= OB=2,BD=OB•sin60°=4×=2,
∴B(﹣2,2 ),
∴k=﹣2×2 =﹣4.
【点睛】
本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.
15、1:1
【解析】
根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.
【详解】
∵S△BDE:S△CDE=1:3,
∴BE:EC=1:3,
∵DE∥AC,
∴△BED∽△BCA,
∴S△BDE:S△BCA=()2=1:16,
∴S△BDE:S四边形DECA=1:1,
故答案为1:1.
【点睛】
本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
16、k>1
【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
【详解】
∵反比例函数y=的图象在第二、四象限,
∴1-k<0,
∴k>1.
故答案为:k>1.
【点睛】
此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
17、
【解析】
试题解析:
所以
故答案为
三、解答题(共7小题,满分69分)
18、(1)(2).
【解析】
(1)根据一次函数解析式求出M点的坐标,再把M点的坐标代入反比例函数解析式即可;
(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C,根据一次函数解析式表示出B点坐标,利用△OMB的面积=×BO×MC算出面积,利用勾股定理算出MO的长,再次利用三角形的面积公式可得OM•h,根据前面算的三角形面积可算出h的值.
【详解】
解:(1)∵一次函数y1=﹣x﹣1过M(﹣2,m),∴m=1.∴M(﹣2,1).
把M(﹣2,1)代入得:k=﹣2.
∴反比列函数为.
(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C.
∵一次函数y1=﹣x﹣1与y轴交于点B,
∴点B的坐标是(0,﹣1).
∴.
在Rt△OMC中,,
∵,∴.
∴点B到直线OM的距离为.
19、x=60
【解析】
设有x个客人,根据题意列出方程,解出方程即可得到答案.
【详解】
解:设有x个客人,则
解得:x=60;
∴有60个客人.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
20、(1),(2)AC⊥CD(3)∠BMC=41°
【解析】
分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
本题解析:
(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
∴m=﹣2×3=﹣6,∴y=﹣,
设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
∴,解得,∴y=x﹣2;
(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
在△OAC和△BCD中
,∴△OAC≌△BCD(SAS),∴AC=CD,
∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)∠BMC=41°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,∴∠BMC=∠DAC,
∵△OAC≌△BCD,∴AC=CD,
∵AC⊥CD,∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=41°.
21、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
【解析】
试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
由题意,
解得,
答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
由题意w=100a+150(200﹣a)=﹣50a+30000,
∵﹣50<0,
∴w随x的增大而减小,
∴当a取最小值,w有最大值,
∵200﹣a≤2a,
∴a≥,
∴当a=67时,w最小=﹣50×67+30000=26650(元),
此时200﹣67=133kg,
答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
22、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
【解析】
(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.
【详解】
解:(1)将A(0,1),B(9,10)代入函数解析式得:
×81+9b+c=10,c=1,解得b=−2,c=1,
所以抛物线的解析式y=x2−2x+1;
(2)∵AC∥x轴,A(0,1),
∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
∵点A(0,1),点B(9,10),
∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
∴PE=m+1−(m2−2m+1)=−m2+3m.
∵AC⊥PE,AC=6,
∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
=AC⋅(EF+PF)=AC⋅EP
=×6(−m2+3m)=−m2+9m.
∵0
(3)∵y=x2−2x+1=(x−3)2−2,
P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
∴PF=CF,∴∠PCF=45∘,
同理可得∠EAF=45∘,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q,
设Q(t,1)且AB=,AC=6,CP=,
∵以C,P,Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
②当△CQP∽△ABC时,
CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.
23、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【解析】
(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
【详解】
解:(1)本次调查共抽取的学生有(名)
选择“友善”的人数有(名)
∴条形统计图如图所示:
(2)∵选择“爱国”主题所对应的百分比为,
∴选择“爱国”主题所对应的圆心角是;
(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
24、﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
,
解不等式①得,x≥−2,
解不等式②得,x<1,
∴不等式组的解集为−2≤x<1.
∴不等式组的最大整数解为x=0,
德宏市重点中学2021-2022学年中考数学模试卷含解析: 这是一份德宏市重点中学2021-2022学年中考数学模试卷含解析,共22页。试卷主要包含了的值是,下列命题中错误的有个,若△÷,则“△”可能是等内容,欢迎下载使用。
2022年亳州市重点中学中考适应性考试数学试题含解析: 这是一份2022年亳州市重点中学中考适应性考试数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022学年重庆涪陵区重点中学中考二模数学试题含解析: 这是一份2021-2022学年重庆涪陵区重点中学中考二模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,7的相反数是,下列计算正确的有个等内容,欢迎下载使用。