终身会员
搜索
    上传资料 赚现金

    福建省(三元县2022年中考押题数学预测卷含解析

    立即下载
    加入资料篮
    福建省(三元县2022年中考押题数学预测卷含解析第1页
    福建省(三元县2022年中考押题数学预测卷含解析第2页
    福建省(三元县2022年中考押题数学预测卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省(三元县2022年中考押题数学预测卷含解析

    展开

    这是一份福建省(三元县2022年中考押题数学预测卷含解析,共18页。试卷主要包含了一个正比例函数的图象过点,估计介于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(  )
    A. B. C. D.
    2.下列计算,正确的是(  )
    A. B.
    C.3 D.
    3.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    4.关于的叙述正确的是(  )
    A.= B.在数轴上不存在表示的点
    C.=± D.与最接近的整数是3
    5.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为(  )

    A.32° B.42° C.46° D.48°
    6.方程x2﹣kx+1=0有两个相等的实数根,则k的值是(  )
    A.2 B.﹣2 C.±2 D.0
    7.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )

    A.12 B.16 C.20 D.24
    8.一个正比例函数的图象过点(2,﹣3),它的表达式为(  )
    A. B. C. D.
    9.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为(  )

    A.y= B.y= C.y= D.y=﹣
    10.估计介于( )
    A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
    11.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
    A. B. C. D.
    12.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.

    14.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
    15.不等式组的非负整数解的个数是_____.
    16.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.

    17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
    18.已知关于x的方程有解,则k的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
    20.(6分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
    21.(6分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.

    22.(8分)计算: ÷ – + 20180
    23.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.

    24.(10分)如图所示,在中,,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分.

    25.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
    节目代号
    A
    B
    C
    D
    E
    节目类型
    新闻
    体育
    动画
    娱乐
    戏曲
    喜爱人数
    12
    30
    m
    54
    9

    请你根据以上的信息,回答下列问题:
    (1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
    (2)被调查学生中,最喜爱电视节目的“众数” ;
    (3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
    26.(12分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.
    (1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
    (2)若要使每月的利润为40000元,销售单价应定为多少元?
    (3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
    27.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题分析:A.是轴对称图形,故本选项错误;
    B.是轴对称图形,故本选项错误;
    C.是轴对称图形,故本选项错误;
    D.不是轴对称图形,故本选项正确.
    故选D.
    考点:轴对称图形.
    2、B
    【解析】
    根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
    【详解】
    解:∵=2,∴选项A不正确;
    ∵=2,∴选项B正确;
    ∵3﹣=2,∴选项C不正确;
    ∵+=3≠,∴选项D不正确.
    故选B.
    【点睛】
    本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    3、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    4、D
    【解析】
    根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
    【详解】
    选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
    选项D,与最接近的整数是=1.
    故选D.
    【点睛】
    本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
    5、D
    【解析】
    根据平行线的性质与对顶角的性质求解即可.
    【详解】
    ∵a∥b,
    ∴∠BCA=∠2,
    ∵∠BAC=100°,∠2=32°
    ∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
    ∴∠1=∠CBA=48°.
    故答案选D.
    【点睛】
    本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
    6、C
    【解析】
    根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
    【详解】
    ∵方程x2﹣kx+1=0有两个相等的实数根,
    ∴△=(﹣k)2﹣4×1×1=0,
    解得:k=±2,
    故选C.
    【点睛】
    本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
    7、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    【点睛】
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    8、A
    【解析】
    利用待定系数法即可求解.
    【详解】
    设函数的解析式是y=kx,
    根据题意得:2k=﹣3,解得:k=.
    ∴ 函数的解析式是:.
    故选A.
    9、C
    【解析】
    由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
    【详解】
    ∵S△AOC=4,
    ∴k=2S△AOC=8;
    ∴y=;
    故选C.
    【点睛】
    本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
    10、C
    【解析】
    解:∵,
    ∴,即
    ∴估计在2~3之间
    故选C.
    【点睛】
    本题考查估计无理数的大小.
    11、D
    【解析】
    根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
    【详解】
    解:根据题意画图如下:

    共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
    则抽到的书签正好是相对应的书名和作者姓名的概率是=;
    故选D.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    12、B
    【解析】
    通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
    【详解】
    由图象可知,抛物线开口向下,则,,
    抛物线的顶点坐标是,
    抛物线对称轴为直线,

    ,则①错误,②正确;
    方程的解,可以看做直线与抛物线的交点的横坐标,
    由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
    则方程有两个相等的实数根,③正确;
    由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
    不等式可以化为,
    抛物线顶点为,
    当时,,
    故⑤正确.
    故选:.
    【点睛】
    本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
    ∴x﹣y=﹣b,xy=8,
    而直线y=x+b与x轴交于A点,
    ∴OA=b.
    又∵OP2=x2+y2,OA2=b2,
    ∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
    故答案为1.
    14、0
    【解析】
    根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
    故答案为0
    点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
    15、1
    【解析】
    先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.
    【详解】
    解:
    解①得:x≥﹣,
    解②得:x<1,
    ∴不等式组的解集为﹣≤x<1,
    ∴其非负整数解为0、1、2、3、4共1个,
    故答案为1.
    【点睛】
    本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
    16、这一天的最高气温约是26°
    【解析】
    根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
    【详解】
    解:根据图象可得这一天的最高气温约是26°,
    故答案为:这一天的最高气温约是26°.
    【点睛】
    本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    17、1
    【解析】
    根据函数值相等两点关于对称轴对称,可得答案.
    【详解】
    由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
    18、k≠1
    【解析】
    试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.
    考点:分式方程.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、该工程队原计划每周修建5米.
    【解析】
    找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
    【详解】
    设该工程队原计划每周修建x米.
    由题意得:+1.
    整理得:x2+x﹣32=2.
    解得:x1=5,x2=﹣6(不合题意舍去).
    经检验:x=5是原方程的解.
    答:该工程队原计划每周修建5米.
    【点睛】
    本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
    20、(1);(2)k=-3
    【解析】
    (1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
    【详解】
    解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
    解得
    (2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:
    ①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
    解得k1=k2=1

    ∴k1=k2=1不合题意,舍去
    ②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
    解得k1=1,k2=-3

    ∴k=-3
    综合①、②可知k=-3
    【点睛】
    一元二次方程根与系数关系,根判别式.
    21、(1)90°;(1)证明见解析;(3)1.
    【解析】
    (1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
    【详解】
    解:(1)解:∵对角线AC为⊙O的直径,
    ∴∠ADC=90°,
    ∴∠EDC=90°;
    (1)证明:连接DO,
    ∵∠EDC=90°,F是EC的中点,
    ∴DF=FC,
    ∴∠FDC=∠FCD,
    ∵OD=OC,
    ∴∠OCD=∠ODC,
    ∵∠OCF=90°,
    ∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
    ∴DF是⊙O的切线;
    (3)解:如图所示:可得∠ABD=∠ACD,
    ∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
    ∴∠DCA=∠E,
    又∵∠ADC=∠CDE=90°,
    ∴△CDE∽△ADC,
    ∴,
    ∴DC1=AD•DE
    ∵AC=1DE,
    ∴设DE=x,则AC=1x,
    则AC1﹣AD1=AD•DE,
    期(1x)1﹣AD1=AD•x,
    整理得:AD1+AD•x﹣10x1=0,
    解得:AD=4x或﹣4.5x(负数舍去),
    则DC=,
    故tan∠ABD=tan∠ACD=.

    22、2
    【解析】
    根据实数的混合运算法则进行计算.
    【详解】
    解:原式= -( -1)+1=- +1+1=2
    【点睛】
    此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.
    23、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
    【解析】
    试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
    试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
    考点:1.折线统计图;2.条形统计图.
    24、(1)详见解析;(2)30°.
    【解析】
    (1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
    (2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
    【详解】
    (1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
    ∵EF为AB的垂直平分线,
    ∴PA=PB,
    ∴点P即为所求.

    (2)如图,连接AP,
    ∵,
    ∴,
    ∵AP是角平分线,
    ∴,
    ∴,
    ∵,
    ∴∠PAC+∠PAB+∠B=90°,
    ∴3∠B=90°,
    解得:∠B=30°,
    ∴当时,AP平分.

    【点睛】
    本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
    25、(1)150;45,36, (2)娱乐 (3)1
    【解析】
    (1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;
    (2)根据众数的定义求解可得;
    (3)用总人数乘以样本中喜爱新闻节目的人数所占比例.
    【详解】
    解:(1)被调查的学生总数为30÷20%=150(人),
    m=150−(12+30+54+9)=45,
    n%=×100%=36%,即n=36,
    故答案为150,45,36;
    (2)由题意知,最喜爱电视节目为“娱乐”的人数最多,
    ∴被调查学生中,最喜爱电视节目的“众数”为娱乐,
    故答案为娱乐;
    (3)估计该校最喜爱新闻节目的学生人数为2000×=1.
    【点睛】
    本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.
    【解析】
    试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;
    (2)令y=40000代入解析式,求出满足条件的x的值即可;
    (3)根据(1)得到销售利润的关系式,利用配方法可求最大值.
    试题解析:
    (1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;
    (2)令w=-2x2+1400x-200000=40000,
    解得:x=300或x=400,
    故要使每月的利润为40000元,销售单价应定为300或400元;
    (3)y=-2x2+1400x-200000=-2(x-350)2+45000,
    当x=250时y=-2×2502+1400×250-200000=25000;
    故最高利润为45000元,最低利润为25000元.
    27、(1);(2);(3)最多获利4480元.
    【解析】
    (1)销售量y为200件加增加的件数(80﹣x)×20;
    (2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;
    (3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.
    【详解】
    (1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
    所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);
    (2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
    所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:
    W=﹣20x2+3000x﹣108000;
    (3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,
    w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,
    ∵a=﹣20<0,
    ∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,
    ∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).
    所以商场销售该品牌童装获得的最大利润是4480元.
    【点睛】
    二次函数的应用.

    相关试卷

    2022年福建省福州十八中学中考押题数学预测卷含解析:

    这是一份2022年福建省福州十八中学中考押题数学预测卷含解析,共17页。试卷主要包含了运用图形变化的方法研究下列问题,下列二次根式中,最简二次根式是等内容,欢迎下载使用。

    2022届江苏省洪泽区金湖县中考押题数学预测卷含解析:

    这是一份2022届江苏省洪泽区金湖县中考押题数学预测卷含解析,共17页。

    2022届福建省泉州市石狮市中考押题数学预测卷含解析:

    这是一份2022届福建省泉州市石狮市中考押题数学预测卷含解析,共26页。试卷主要包含了下列运算正确的是,下列命题是真命题的是,二次函数的最大值为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map