福建省福州马尾区四校联考2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.计算-5x2-3x2的结果是( )
A.2x2 B.3x2 C.-8x2 D.8x2
2.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A.50° B.60° C.70° D.80°
3.下列说法正确的是( )
A.“买一张电影票,座位号为偶数”是必然事件
B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定
C.一组数据2,4,5,5,3,6的众数是5
D.一组数据2,4,5,5,3,6的平均数是5
4.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )
A. B. C. D.
5.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
6.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
A. B.
C. D.
7.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为( )
A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
8.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
9.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( )
A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人
10.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是( )
A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c
二、填空题(本大题共6个小题,每小题3分,共18分)
11.要使分式有意义,则x的取值范围为_________.
12.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.
13.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
14.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.
15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
16.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.
三、解答题(共8题,共72分)
17.(8分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
18.(8分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.
(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;
(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.
图① 图② 图③
19.(8分)如图1,抛物线y1=ax1﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.
(1)求抛物线y1的解析式;
(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
20.(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
21.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
22.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?
23.(12分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
24.(1)计算:;
(2)化简:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用合并同类项法则直接合并得出即可.
【详解】
解:
故选C.
【点睛】
此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
2、B
【解析】
试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
考点:旋转的性质.
3、C
【解析】
根据确定性事件、方差、众数以及平均数的定义进行解答即可.
【详解】
解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;
B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;
C、一组数据2,4,5,5,3,6的众数是5,此选项正确;
D、一组数据2,4,5,5,3,6的平均数是,此选项错误;
故选:C.
【点睛】
本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、B
【解析】
直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
【详解】
∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
十位数为3,则两位数是3的倍数的个数为2.
∴得到的两位数是3的倍数的概率为: =.
故答案选:B.
【点睛】
本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
5、A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小的数.
6、D
【解析】
试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
∴△≥0,
∴4﹣4(k+1)≥0,
解得k≤0,
∵x1+x2=﹣2,x1•x2=k+1,
∴﹣2﹣(k+1)<﹣1,
解得k>﹣2,
不等式组的解集为﹣2<k≤0,
在数轴上表示为:
,
故选D.
点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
7、C
【解析】
解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
故选C.
【点睛】
本题考查数据分析.
8、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
9、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
用科学记数法表示16000,应记作1.6×104,
故选A.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、D
【解析】
分析:根据图示,可得:c 详解: ∵c<0<a,|c|>|a|,
∴a+c<0,
∴选项A不符合题意;
∵c<b<0,
∴b+c<0,
∴选项B不符合题意;
∵c<b<0<a,c<0,
∴ac<0,bc>0,
∴ac<bc,
∴选项C不符合题意;
∵a>b,
∴a﹣c>b﹣c,
∴选项D符合题意.
故选D.
点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠1
【解析】
由题意得
x-1≠0,
∴x≠1.
故答案为x≠1.
12、1
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.
【详解】
解:∵直线m∥n,
∴∠2=∠ABC+∠1=30°+20°=1°,
故答案为:1.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
13、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
14、(2,1)
【解析】
∵一次函数y=ax+b,
∴当x=2,y=2a+b,
又2a+b=1,
∴当x=2,y=1,
即该图象一定经过点(2,1).
故答案为(2,1).
15、1.
【解析】
试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.
考点:旋转的性质.
16、
【解析】
如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.
【详解】
如图,连接CO并延长,交AB于点F;
∵AC=BC,
∴CF⊥AB(垂径定理的推论);
∵BD是⊙O的直径,
∴AD⊥AB;设⊙O的半径为r;
∴AD∥OC,△ADE∽△COE,
∴AD:CO=DE:OE,
而DE=3,AD=5,OE=r-3,CO=r,
∴5:r=3:(r-3),
解得:r=,
故答案为.
【点睛】
该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.
三、解答题(共8题,共72分)
17、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.
【解析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣2,
∴n=0﹣(﹣2)=2,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
当﹣2<m≤2时,n=2.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
18、(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.
【解析】
试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;
(2)延长交的延长线于点由全等三角形的对应边相等验证关系.
试题解析:(1)图②结论:
证明:作,的延长线交于点.
∵四边形是矩形,
由是中点,可证≌
(2)图③结论:
延长交的延长线于点如图所示
因为四边形是平行四边形
所以//且,
因为为的中点,所以也是的中点,
所以
又因为
所以
又因为
所以≌
所以
因为
19、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.
【解析】
(1)应用待定系数法求解析式;
(1)设出点T坐标,表示△TAC三边,进行分类讨论;
(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.
【详解】
解:(1)由已知,c=,
将B(1,0)代入,得:a﹣=0,
解得a=﹣,
抛物线解析式为y1=x1- x+,
∵抛物线y1平移后得到y1,且顶点为B(1,0),
∴y1=﹣(x﹣1)1,
即y1=-x1+ x-;
(1)存在,
如图1:
抛物线y1的对称轴l为x=1,设T(1,t),
已知A(﹣3,0),C(0,),
过点T作TE⊥y轴于E,则
TC1=TE1+CE1=11+()1=t1﹣t+,
TA1=TB1+AB1=(1+3)1+t1=t1+16,
AC1=,
当TC=AC时,t1﹣t+=,
解得:t1=,t1=;
当TA=AC时,t1+16=,无解;
当TA=TC时,t1﹣t+=t1+16,
解得t3=﹣;
当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;
(3)如图1:
设P(m,),则Q(m,),
∵Q、R关于x=1对称
∴R(1﹣m,),
①当点P在直线l左侧时,
PQ=1﹣m,QR=1﹣1m,
∵△PQR与△AMG全等,
∴当PQ=GM且QR=AM时,m=0,
∴P(0,),即点P、C重合,
∴R(1,﹣),
由此求直线PR解析式为y=﹣x+,
当PQ=AM且QR=GM时,无解;
②当点P在直线l右侧时,
同理:PQ=m﹣1,QR=1m﹣1,
则P(1,﹣),R(0,﹣),
PQ解析式为:y=﹣;
∴PR解析式为:y=﹣x+或y=﹣.
【点睛】
本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.
20、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【解析】
(1)根据题意可以得到y关于x的函数解析式,本题得以解决;
(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
【详解】
(1)由题意可得,
y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
即y与x的函数关系式为y=﹣50x+10500;
(2)由题意可得,,得x,
∵x是整数,y=﹣50x+10500,
∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
21、(1)50人;(2)补图见解析;(3).
【解析】
分析:(1)根据化学学科人数及其所占百分比可得总人数;
(2)根据各学科人数之和等于总人数求得历史的人数即可;
(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
详解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
22、这项工程的规定时间是83天
【解析】
依据题意列分式方程即可.
【详解】
设这项工程的规定时间为x天,根据题意得 .
解得x=83.
检验:当x=83时,3x≠0.所以x=83是原分式方程的解.
答:这项工程的规定时间是83天.
【点睛】
正确理解题意是解题的关键,注意检验.
23、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
24、(1)4+;(2).
【解析】
(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;
(3)根据分式的减法和除法可以解答本题.
【详解】
(1)
=4+1+|1﹣2×|
=4+1+|1﹣|
=4+1+﹣1
=4+;
(2)
=
=
=.
【点睛】
本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.
2023-2024学年福建省福州马尾区四校联考九上数学期末经典试题含答案: 这是一份2023-2024学年福建省福州马尾区四校联考九上数学期末经典试题含答案,共8页。试卷主要包含了下列事件中,是随机事件的是,反比例函数y=﹣的图象在等内容,欢迎下载使用。
2023-2024学年福建省福州马尾区四校联考数学八上期末监测模拟试题含答案: 这是一份2023-2024学年福建省福州马尾区四校联考数学八上期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。
福建省福州市五校联考2021-2022学年中考数学仿真试卷含解析: 这是一份福建省福州市五校联考2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了sin45°的值等于等内容,欢迎下载使用。