所属成套资源:人教版数学八年级上册专项培优练习(含答案)
人教版数学八年级上册专项培优练习二《全等三角形性质与判定》(含答案)
展开
这是一份人教版数学八年级上册专项培优练习二《全等三角形性质与判定》(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN
2.如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是( )
A.SSS B.ASA C.AAS D.SAS
3.某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度也为30 cm,依据是( )
A.SAS B.ASA C.SSS D.AAS
4.要测量圆形工件的外径,工人师傅设计了如右图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则这个工件的外径必是CD之长了,其中的依据是全等三角形的判定条件( )
A.ASA B.AAS C.SAS D.SSS
5.下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
6.如图,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是( )
A.△ABC≌△ADE B.△ABO≌△ADO C.△AEO≌△ACO D.△ABC≌△ADO
7.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
下面四个结论:
①∠ABE=∠BAD;②△CBE≌△ACD;③AB=CE;④AD-BE=DE.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个 B.2个 C.3个 D.4个
9.如图,给出下列四组条件:
①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E.BC=EF;
③∠B=∠E,BC=EF,∠C=∠F; ④AB=DE,AC=DF,∠B=∠E.
其中,能使△ABC≌△DEF的条件共有( )
A.1组 B.2组 C.3组 D.4组
10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.
给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,
其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
11.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS.
下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP.
其中正确的是( )
A.①③ B.②③ C.①② D.①②③
12.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.
以下四个结论:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
二、填空题
13.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.
14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 对全等三角形.
16.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′的位置,则BC′与CC′之间的关系是 .
17.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为 .
18.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .
三、解答题
19.如图,点D,E在△ABC的边BC上,连结AD,AE.
①AB=AC;②AD=AE;③BD=CE.
以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:
①②⇒③;①③⇒②;②③⇒①.
(1)以上三个命题是真命题的为(直接作答): ;
(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)
20.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.
21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求证:(1)EC=BF;(2)EC⊥BF.
22.如图,已知在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH上的一点,且DH=HC,连接BD并延长BD交AC于点E,连接EH.
(1)请补全图形;
(2)求证:△ABE是直角三角形;
(3)若BE=a,CE=b,求出S△CEH:S△BEH的值(用含有a,b的代数式表示)
23.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.
(1)求证:CO平分∠ACD;
(2)求证:AB+CD=AC.
24.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.
(1)求证:∠B+∠AFD=180°;
(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.
25.观察发现:
如图1,OP平分∠MON,在OM,ON上分别取OA,OB,使OA=OB,再在OP上任取一点D,连接AD,BD.请你猜想AD与BD之间的数量关系,并说明理由.
拓展应用:
如图2,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F,请你写出FE与FD之间的数量关系,并说明理由.
参考答案
1.C
2.B
3.A
4.C
5.B
6.B
7.C
8.C
9.C
10.A
11.C
12.D
13.答案为:2.
14.答案为:55°.
15.答案为:3
16.答案为:垂直且相等.
17.答案为:(-2,-3)、(4,3)、(4,-3)
18.答案为:48°;
19.解:(1)①②⇒③;①③⇒②;②③⇒①;
(2)选择①③⇒②,
∵AB=AC,
∴∠B=∠C,
又∵BD=CE,
∴△ABD≌△ACE,
∴AD=AE.
20.证明:∵△ABC和△ADE都是等腰直角三角形
∴AD=AE,AB=AC,
又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,
∴∠DAB=∠EAC,
∵在△ADB和△AEC中
∴△ADB≌△AEC(SAS),
∴BD=CE.
21.证明:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,
在△ABF和△AEC中,
∵,
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如图,根据(1),△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(对顶角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,
所以EC⊥BF.
22. (1)解:图形如图所示;
(2)证明:∵AH⊥BC,
∴∠BHD=∠AEH=90°,
∵∠ABC=45°,
∴∠BAH∠ABH=45°,
∴AH=BH,
在△BHD和△AHC中,
,
∴△BHD≌△AHC(SAS),
∴∠HBD=∠CAH,
∵∠HBD+∠BDH=90°,∠BDH=∠ADE,
∴∠ADE+∠DAE=90°,
∴∠AED=90°,
∴△ABE是直角三角形.
(3)作HM⊥BE于M,HN⊥AC于N.
∵△BHD≌△AHC,
∴HM=HN(全等三角形对应边上的高相等),
∴==.
23.证明:(1)过O点作OE⊥AC于点E.
∵∠ABD=90°且OA平分∠BAC
∴OB=OE,
又∵O是BD中点
∴OB=OD,
∴OE=OD,
∵OE⊥AC,∠D=90°
∴点O在∠ACD 的角平分线上
∴OC平分∠ACD.
(2)在Rt△ABO和Rt△AEO中
∵
∴Rt△ABO≌Rt△AEO(HL),
∴AB=AE,
在Rt△CDO和Rt△CEO中
∵
∴Rt△CDO≌Rt△CEO(HL),
∴CD=CE,
∴AB+CD=AE+CE=AC.
24.解:(1)在AB上截取AG=AF.
∵AD是△ABC的角平分线,
∴∠FAD=∠DAG.
在△AFD和△AGD中,
∴△AFD≌△AGD(SAS),
∴∠AFD=∠AGD,FD=GD,
∵FD=BD,
∴BD=GD,
∴∠DGB=∠B,
∴∠B+∠AFD=∠DGB+∠AGD=180°;
(2)AE=AF+FD.过点E作∠DEH=∠DEA,点H在BC上.
∵∠B+2∠DEA=180°,
∴∠HEB=∠B.
∵∠B+∠AFD=180°,
∴∠AFD=∠AGD=∠GEH,
∴GD∥EH.
∴∠GDE=∠DEH=∠DEG.
∴GD=GE.
又∵AF=AG,
∴AE=AG+GE=AF+FD.
25.解:(1)AD=BD.
理由:∵OP平分∠MON,
∴∠DOA=∠DOB,
∵OA=OB,OD=OD,
∴△OAD≌△OBD,
∴AD=DB.
(2)FE=FD.
理由:如图2,在AC上截取AG=AE,连接FG,
∴△AEF≌△AGF,
∴∠AFE=∠AFG,FE=FG.
∵∠ACB是直角,即∠ACB=90°,
又∵∠B=60°,
∴∠BAC=30°,
∵AD,CE分别是∠BAC,∠BCA的平分线,
∴∠FAC+∠FCA=15°+45°=60°=∠AFE,
∴∠AFE=∠AFG=∠CFD=60°,
∴∠CFG=180°﹣60°﹣60°=60°,
∴∠CFG=∠CFD,
又FC为公共边,
∴△CFG≌△CFD,
∴FG=FD,
∴FE=FD.
相关试卷
这是一份人教版数学八年级上册期中复习逐点清练习 第十一讲《全等三角形的判定与性质》(含答案),共8页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册12.3 角的平分线的性质巩固练习,共22页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份人教版数学九年级上册专项培优练习二《根与系数的关系》(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。