|试卷下载
终身会员
搜索
    上传资料 赚现金
    人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)
    立即下载
    加入资料篮
    人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)01
    人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)02
    人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)

    展开
    这是一份人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教版数学九年级上册专项培优练习十四

    《圆周角定理》

                  、选择题

    1.如图,AB是O的直径,C、D是O上两点,CDAB,若DAB=65°,则AOC等于(    )

    A.25°                     B.30°                    C.50°                      D.65°

    2.如图,AB是O的直径,CD为弦,CDAB且交AB于点E,则下列结论不成立的是(   )

    A.A=D        B.        C.ACB=90°      D.COB=3D

    3.如图,经过原点O的P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则ACB=(     )

    A.80°          B.90°           C.100°         D.无法确定

    4.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是(  )

    A. cm      B.5cm       C.6cm        D.10cm

    5.如图,弧AB是半圆,O为AB中点,C、D两点在弧AB上,且ADOC,连接BC、BD.若弧CD=62°,则弧AD的度数为(    )

    A.56°                     B.58°                      C.60°                       D.62°

    6.如图,AB是O的直径,C,D是O上的两点,且BC平分ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是(  )

    A.OCBD     B.ADOC      C.CEF≌△BED    D.AF=FD

    7.如图,ABCD的顶点A、B、D在O上,顶点C在O的直径BE上,ADC=70°,连接AE,则AEB的度数为(   )

    A.20°     B.24°     C.25°     D.26°

    8.如图,AB是半圆O的直径,C是半圆O上一点,CD是O的切线,ODBC,OD与半圆O交于点E,则下列结论中不一定正确的是(   )

    A.ACBC       B.BE平分ABC      C.BECD       D.D=A

    9.如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC.若AB=8,CD=2,则EC的长为(      )

    A.2                        B.8                         C.2                          D.2

    10.在直角三角形ABC中,C=60°,以AB为直径的半圆交斜边BC于D,则ACD与ABD的面积之比为(     )

    A.1:2                        B.1:3                       C.2:3                       D.3:4

    11.如图,P与x轴交于点A(5,0),B(1,0),与y轴的正半轴交于点C.若ACB=60°,则点C的纵坐标为(  )

    A.    B.2     C.4     D.2+2

    12.已知点A,B,C是直径为6cm的O上的点,且AB=3cm,AC=3cm,则BAC度数为(     )

    A.15°                    B.75°或15°                   C.105°或15°                  D.75°或105°

                  、填空题

    13.如图,ABC内接于O,BA=BC,ACB=28°,AD为O的直径,则DAC的度数是     .

    14.如图,AB是O的直径,C,D是O上的两点,若BCD=28°,则ABD=     .

    15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3°的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是______.

    16.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则ACD的度数为       .

    17.阅读下面材料:

    在数学课上,老师提出如下问题:

    尺规作图:作RtABC,使其斜边AB=c,一条直角边BC=a.

    已知线段a,c如图.

    小芸的作法如下:

    取AB=c,作AB的垂直平分线交AB于点O;

    以点O为圆心,OB长为半径画圆;

    以点B为圆心,a长为半径画弧,与O交于点C;

    连接BC,AC.

    则RtABC即为所求.

    老师说:小芸的作法正确.

    请回答:小芸的作法中判断ACB是直角的依据是______________.

     

    18.如图,AB是半O的直径,点C在半O上,AB=5cm,AC=4cm.D是弧BC上的一个动点,连接AD,过点C作CEAD于E,连接BE.在点D移动的过程中,BE的最小值为            .

     

                  、解答题

    19.如图,已知点A,B,C,D均在O上,CD为ACE的平分线.

    (1)求证:ABD为等腰三角形;

    (2)若DCE=45°,BD=6,求O的半径.

     

     

     

     

     

    20.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交O于点F,连接OE、EF.

    (1)试判断ACD的形状,并说明理由;

    (2)求证:ADE=OEF.

     

     

     

    21.如图,AB为O的直径,点C在O上,延长BC至点D,使DC=BC.延长DA与O的另一个交点为E,连接AC,CE.

    (1)求证:B=D;

    (2)若AB=13,BCAC=7,求CE的长. 

     

     

     

     

     

     

    22.如图,在平面直角坐标系中,以M(0,2)圆心,4为半径的M交x轴于A、B两点,交y轴于C、D两点,连结BM并延长交M于点P,连结PC交x轴于点E.

    (1)求DMP的度数;

    (2)求BPE的面积.

     

     

     

     

     

     

     

     

     

    23.如图,AB是O的直径,C是弧BD的中点,CEAB于E,BD交CE于点F.

    (1)求证:CFBF;

    (2)若CD6,AC8,则O的半径为______,CE的长是______.

     

     

     

     

     

     

    24.如图,A、B是O上的两个点,已知P为平面内一点,(P、A、B三点不在同一条直线上).

    (1)若点P在O上,O的半径为1.

    APB=45°时,AB的长度为      

    当AB=1时,APB=        °

    (2)若点P不在O上,直线PA、PB交O于点C、D(点C与点A、点D与点B均不重合),连接AD,设CAD=αADB=β,试用αβ表示APB(请直接写出答案,并画出示意图).


    参考答案

    1.C.

    2.D.

    3.B.

    4.B.

    5.A.

    6.C.

    7.A.

    8.C.

    9.D.

    10.B.

    11.C.

    12.C.

    13.答案为:34°.

    14.答案为:62°

    15.答案为:144°.

    16.答案为:61°.

    17.答案为:直径所对的圆周角为直角.

    18.答案为:-2.

    19.证明:(1)CD平分ECA,

    ∴∠ECD=DCA.

    ∵∠ECD+DCB=180°DCB+BAD=180°

    ∴∠ECD=DAB.

    ∵∠DCA=DBA,

    ∴∠DBA=DAB.

    DB=DA.

    ∴△ABD是等腰三角形.

    (2)∵∠DCE=DCA=45°

    ∴∠ECA=ACB=90°.

    ∴∠BDA=90°.

    AB是直径.

    BD=AD=6,

    AB=6.

    ∴⊙O的半径为3.

    20.解:(1)ACD是等腰三角形.连接AE,

    AB是O的直径,

    ∴∠AED=90°

    AECD,

    CE=ED,

    AC=AD,

    ∴△ACD是等腰三角形;

    (2)∵∠ADE=DEF+F,OEF=OED+DEF,

    OED=B,B=F,

    ∴∠ADE=OEF.

    21.证明:(1)AB为O的直径,

    ∴∠ACB=90°

    ACBC,
    DC=CB,

    AD=AB,

    ∴∠B=D

    (2)解:设BC=x,则AC=x7,  
    在RtABC中,AC2+BC2=AB2, 即(x7)2+x2=132

    解得:x1=12,x25(舍去),
    ∵∠B=E,B=D,

    ∴∠D=E,

    CD=CE,
    CD=CB,

    CE=CB=12

    22.解:(1)M(0,2),

    OM=2,

    在RtOBM中,MB=4,OM=2,

    OM=BM,

    ∴∠OBM=30°

    ∴∠BOM=60°

    ∴∠DMP=BMO=60°

    (2)连结PA,如图,

    PB为直径,

    ∴∠BPP=90°

    在RtPBA中,

    ∵∠ABP=30°,PB=8,

    PA=PB=4,AB=PA=4

    OMAB,

    弧AC=弧BC,

    ∴∠APC=BOC=30°

    在RtPAE中,∵∠APE=30°,PA=4,

    AE=PA=

    BE=ABAE=4

    ∴△BPE的面积=×4×.

    23.(1)证明:AB是O的直径,

    ∴∠ACB90°

    CEAB,

    ∴∠CEB90°

    ∴∠290°﹣∠ACE﹦∠A,

    C是弧BD的中点,

    弧BC=弧DC,

    ∴∠1﹦∠A(等弧所对的圆周角相等),

    ∴∠1﹦∠2,

    CFBF;

    (2)解:C是弧BD的中点,CD6,

    BC=6,

    ∵∠ACB90°

    AB2=AC2+BC2

    BC=CD,

    AB2=64+36=100,

    AB=10,

    CE=4.8,

    O的半径为5,CE的长是4.8.

    24.解:(1)①∵点P在O上,APB=45°

    ∴∠AOB=90°

    OA=OB=1,

    AB=

    ②∵AB=1,OA=OB=1,

    ∴△OAB是等边三角形,

    ∴∠AOB=90°

    若点P在优弧AB上,则APB=30°

    若点P在劣弧AB上,则APB=180°﹣30°=150°

    综上可得:APB=30°或150°;故答案为:30°或150°

    (2)P在圆外时,

    如图,若点C、D分别在线段PA、PB上,则APB=β﹣α

    如图,若点C在线段PA的延长线上,点D在线段PB上,则APB=αβ﹣180°

    如图,若点C在线段PA上,点D在线段PB的延长线上,则APB=180°﹣α﹣β

    如图,若点C、D分别在线段PA、PB的延长线上,则APB=α﹣β

    P在圆内时,如图APB=αβ.

     

    相关试卷

    初中数学人教版九年级上册24.4 弧长及扇形的面积课后测评: 这是一份初中数学人教版九年级上册24.4 弧长及扇形的面积课后测评,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教版数学九年级上册专项培优练习《圆-垂径定理与圆周角定理》(2份打包,教师版+原卷版): 这是一份人教版数学九年级上册专项培优练习《圆-垂径定理与圆周角定理》(2份打包,教师版+原卷版),文件包含人教版数学九年级上册专项培优练习《圆-垂径定理与圆周角定理》教师版doc、人教版数学九年级上册专项培优练习《圆-垂径定理与圆周角定理》原卷版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    人教版数学九年级上册专项培优练习二《根与系数的关系》(含答案): 这是一份人教版数学九年级上册专项培优练习二《根与系数的关系》(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版数学九年级上册专项培优练习十四《圆周角定理》(含答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map