|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省河源市名校2021-2022学年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    广东省河源市名校2021-2022学年中考数学仿真试卷含解析01
    广东省河源市名校2021-2022学年中考数学仿真试卷含解析02
    广东省河源市名校2021-2022学年中考数学仿真试卷含解析03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省河源市名校2021-2022学年中考数学仿真试卷含解析

    展开
    这是一份广东省河源市名校2021-2022学年中考数学仿真试卷含解析,共29页。试卷主要包含了计算3a2-a2的结果是,一、单选题,某种圆形合金板材的成本y等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在平面直角坐标系中,点,则点P不可能在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为(  )

    A. B. C. D.
    3.方程=的解为( )
    A.x=3 B.x=4 C.x=5 D.x=﹣5
    4.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为(  )cm

    A.1 B.2 C.3 D.4
    5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
    A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
    6.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是(  )

    A.1 B.3 C.4 D.5
    7.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    8.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    9.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是(  )

    A.a<0 B.b2-4ac<0 C.当-10 D.-=1
    10.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    11.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A. B. C. D.
    12.下列说法正确的是(  )
    A.﹣3是相反数 B.3与﹣3互为相反数
    C.3与互为相反数 D.3与﹣互为相反数
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.

    14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .
    15.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.

    16.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
    17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .

    18.阅读下面材料:
    数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

    小艾的作法如下:
    (1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
    (2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
    (3)两弧分别交于点P和点M
    (4)连接PM,与直线l交于点Q,直线PQ即为所求.
    老师表扬了小艾的作法是对的.
    请回答:小艾这样作图的依据是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组,请结合题意填空,完成本题的解答.
    (1)解不等式①,得   ;
    (2)解不等式②,得   ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式的解集为   .
    20.(6分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    21.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
    类别
    频数(人数)
    频率
    小说

    0.5
    戏剧
    4

    散文
    10
    0.25
    其他
    6

    合计

    1
    根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

    22.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

    23.(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?

    24.(10分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围.

    25.(10分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
    调查结果统计表
    组别
    分组(单位:元)
    人数
    A
    0≤x<30
    4
    B
    30≤x<60
    16
    C
    60≤x<90
    a
    D
    90≤x<120
    b
    E
    x≥120
    2
    请根据以上图表,解答下列问题:填空:这次被调查的同学共有   人,a+b=   ,m=   ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

    26.(12分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,
    (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
    (2)连接EF,若BD=4,求EF的长.

    27.(12分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
    (1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为   (填“真”或“假”)命题,并说明理由;
    (2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
    (3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据坐标平面内点的坐标特征逐项分析即可.
    【详解】
    A. 若点在第一象限,则有:

    解之得
    m>1,
    ∴点P可能在第一象限;
    B. 若点在第二象限,则有:

    解之得
    不等式组无解,
    ∴点P不可能在第二象限;
    C. 若点在第三象限 ,则有:

    解之得
    m<1,
    ∴点P可能在第三象限;
    D. 若点在第四象限,则有:

    解之得
    0 ∴点P可能在第四象限;
    故选B.
    【点睛】
    本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
    2、B
    【解析】
    阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
    【详解】
    由旋转可知AD=BD,
    ∵∠ACB=90°,AC=2,
    ∴CD=BD,
    ∵CB=CD,
    ∴△BCD是等边三角形,
    ∴∠BCD=∠CBD=60°,
    ∴BC=AC=2,
    ∴阴影部分的面积=2×2÷2−=2−.
    故答案选:B.
    【点睛】
    本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
    3、C
    【解析】
    方程两边同乘(x-1)(x+3),得
    x+3-2(x-1)=0,
    解得:x=5,
    检验:当x=5时,(x-1)(x+3)≠0,
    所以x=5是原方程的解,
    故选C.
    4、C
    【解析】
    由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.
    【详解】

    如图,由题意得:
    DA′=DA,EA′=EA,
    ∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF
    =(DA+BD)+(BG+GF+CF)+(AE+CE)
    =AB+BC+AC
    =1+1+1=3(cm)
    故选C.
    【点睛】
    本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.
    5、D
    【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    详解:将数据重新排列为17、18、18、20、20、20、23,
    所以这组数据的众数为20分、中位数为20分,
    故选:D.
    点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    6、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    7、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    8、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    9、D
    【解析】
    试题分析:根据二次函数的图象和性质进行判断即可.
    解:∵抛物线开口向上,

    ∴A选项错误,
    ∵抛物线与x轴有两个交点,

    ∴B选项错误,
    由图象可知,当-1 ∴C选项错误,
    由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
    即-=1,
    ∴D选项正确,
    故选D.
    10、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    11、D
    【解析】
    根据“左加右减、上加下减”的原则,
    将抛物线向左平移1个单位所得直线解析式为:;
    再向下平移3个单位为:.故选D.
    12、B
    【解析】
    符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
    【详解】
    A、3和-3互为相反数,错误;
    B、3与-3互为相反数,正确;
    C、3与互为倒数,错误;
    D、3与-互为负倒数,错误;
    故选B.
    【点睛】
    此题考查相反数问题,正确理解相反数的定义是解答此题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(16,) (8068,)
    【解析】
    利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
    【详解】
    ∵点A(﹣4,0),B(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∴第(2)个三角形的直角顶点的坐标是(4,);
    ∵5÷3=1余2,
    ∴第(5)个三角形的直角顶点的坐标是(16,),
    ∵2018÷3=672余2,
    ∴第(2018)个三角形是第672组的第二个直角三角形,
    其直角顶点与第672组的第二个直角三角形顶点重合,
    ∴第(2018)个三角形的直角顶点的坐标是(8068,).
    故答案为:(16,);(8068,)
    【点睛】
    本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
    14、1
    【解析】
    考点:圆锥的计算.
    分析:求得扇形的弧长,除以1π即为圆锥的底面半径.
    解:扇形的弧长为:=4π;
    这个圆锥的底面半径为:4π÷1π=1.
    点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
    15、x<﹣2或0<x<2
    【解析】
    仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
    【详解】
    解:如图,

    结合图象可得:
    ①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
    综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
    故答案为x<﹣2或0<x<2.
    【点睛】
    本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
    16、500
    【解析】
    设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
    【详解】
    解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
    故答案为:500.
    【点睛】
    本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
    17、①③⑤
    【解析】
    ①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等; 
    ②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF; 
    ③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证; 
    ④连接BD,求出△ABD的面积,然后减去△BDP的面积即可; 
    ⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
    【详解】
    ①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°, 
    ∴∠EAB=∠PAD, 
    又∵AE=AP,AB=AD, 
    ∵在△APD和△AEB中, 
    , 
    ∴△APD≌△AEB(SAS); 
    故此选项成立; 
    ③∵△APD≌△AEB, 
    ∴∠APD=∠AEB, 
    ∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE, 
    ∴∠BEP=∠PAE=90°, 
    ∴EB⊥ED; 
    故此选项成立; 
    ②过B作BF⊥AE,交AE的延长线于F, 
    ∵AE=AP,∠EAP=90°, 
    ∴∠AEP=∠APE=45°, 
    又∵③中EB⊥ED,BF⊥AF, 
    ∴∠FEB=∠FBE=45°, 
    又∵BE= = = , 
    ∴BF=EF= , 
    故此选项不正确; 
    ④如图,连接BD,在Rt△AEP中,
     
    ∵AE=AP=1, 
    ∴EP= , 
    又∵PB= , 
    ∴BE= , 
    ∵△APD≌△AEB, 
    ∴PD=BE= , 
    ∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + . 
    故此选项不正确. 
    ⑤∵EF=BF= ,AE=1, 
    ∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ , 
    ∴S 正方形ABCD=AB 2=4+ , 
    故此选项正确. 
    故答案为①③⑤.
    【点睛】
    本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
    18、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一
    【解析】
    从作图方法以及作图结果入手考虑其作图依据..
    【详解】
    解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.
    【点睛】
    本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
    【解析】
    先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)解不等式①,得x≤1,
    (1)解不等式②,得x≥﹣1,
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为﹣1≤x≤1,
    故答案为x≤1,x≥﹣1,﹣1≤x≤1.
    【点睛】
    本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
    20、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    21、(1)41(2)15%(3)
    【解析】
    (1)用散文的频数除以其频率即可求得样本总数;
    (2)根据其他类的频数和总人数求得其百分比即可;
    (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
    【详解】
    (1)∵喜欢散文的有11人,频率为1.25,
    ∴m=11÷1.25=41;
    (2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
    故答案为15%;
    (3)画树状图,如图所示:

    所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
    ∴P(丙和乙)==.
    22、 (1) AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3) (3,4)或(5,2)或(3,2).
    【解析】
    试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;
    (2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;
    (3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.
    试题解析:(1)∵y=-x+b经过A(0,1),
    ∴b=1,
    ∴直线AB的解析式是y=-x+1.
    当y=0时,0=-x+1,解得x=3,
    ∴点B(3,0).
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,

    ∵x=1时,y=-x+1=,P在点D的上方,
    ∴PD=n-,S△APD=PD•AM=×1×(n-)=n-
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴S△BPD=PD×2=n-,
    ∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
    (3)当S△ABP=2时,n-1=2,解得n=2,
    ∴点P(1,2).
    ∵E(1,0),
    ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,
    ∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4,
    ∴C(3,4).
    第2种情况,如图2∠PBC=90°,BP=BC,

    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5,
    ∴C(5,2).
    第3种情况,如图3,∠PCB=90°,CP=EB,

    ∴∠CPB=∠EBP=45°,
    在△PCB和△PEB中,

    ∴△PCB≌△PEB(SAS),
    ∴PC=CB=PE=EB=2,
    ∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
    考点:一次函数综合题.
    23、(1)60;(2)20,20;(3)38000
    【解析】
    (1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;
    (2)先确定各组的人数,然后根据中位数和众数的定义求解;
    (3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.
    【详解】
    (1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);
    (2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.
    ∵20出现次数最多,∴众数为20元;
    ∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;
    (3)2000=38000(元),∴估算全校学生共捐款38000元.
    【点睛】
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.
    24、(1);(2).
    【解析】
    (1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;
    (2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x的取值范围.
    【详解】
    解:(1)由二次函数的图象经过和两点,
    得,
    解这个方程组,得

    抛物线的解析式为,
    (2)令,得.
    解这个方程,得,.
    ∴此二次函数的图象与轴的另一个交点的坐标为.
    当时,.
    【点睛】
    本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.
    25、50;28;8
    【解析】
    【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
    (2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
    【详解】解:(1)50,28,8;
    (2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
    即扇形统计图中扇形C的圆心角度数为144°;
    (3)1000×=560(人).
    即每月零花钱的数额x元在60≤x<120范围的人数为560人.
    【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.
    26、 (1)见解析;(1)1
    【解析】
    (1)根据角平分线的作图可得;
    (1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.
    【详解】
    (1)如图,射线CF即为所求;

    (1)∵∠CAD=∠CDA,
    ∴AC=DC,即△CAD为等腰三角形;
    又CF是顶角∠ACD的平分线,
    ∴CF是底边AD的中线,即F为AD的中点,
    ∵E是AB的中点,
    ∴EF为△ABD的中位线,
    ∴EF=BD=1.
    【点睛】
    本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.
    27、(1)真;(2);(3)或或.
    【解析】
    (1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
    (2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
    (3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
    【详解】
    (1)真 .
    理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
    则∠MPB=∠MBP>∠ACP,
    所以在线段AB上不存在“好点”;

    (2)∵P为BA延长线上一个“好点”;
    ∴∠ACP=∠MBP;
    ∴△PAC∽△PMB;
    ∴即;
    ∵M为PC中点,
    ∴MP=2;
    ∴;
    ∴.
    (3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM;
    ∴DM2=DP·DB即4= DP·(5DP);
    解得DP=1,DP=4(不在AB边上,舍去;)
    ∴AP=2

    第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;

    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM
    ∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
    解得DP=1(不在AB延长线上,舍去),DP=4
    ∴AP=8;
    第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;

    此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;

    第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
    ∴△PAC∽△PMB;

    ∴BM垂直平分PC则BC=BP= ;

    ∴综上所述,或或;
    【点睛】
    本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.

    相关试卷

    山东青岛重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份山东青岛重点名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,空心圆柱体的左视图是,下列命题正确的是等内容,欢迎下载使用。

    山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若=1,则符合条件的m有,下列各式计算正确的是,将抛物线绕着点,实数 的相反数是等内容,欢迎下载使用。

    广东省茂名市重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份广东省茂名市重点名校2021-2022学年中考数学仿真试卷含解析,共18页。试卷主要包含了如下图所示,该几何体的俯视图是,下列各运算中,计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map