|试卷下载
终身会员
搜索
    上传资料 赚现金
    甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析01
    甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析02
    甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份甘肃省临洮县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是(  )

    A. B. C. D.
    2.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
    A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根
    3.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是(  )
    A.x(x+1)=210 B.x(x﹣1)=210
    C.2x(x﹣1)=210 D.x(x﹣1)=210
    4.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为(  )

    A. B. C. D.
    5.下列几何体中,俯视图为三角形的是( )
    A. B. C. D.
    6.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    7.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(  )
    A.①② B.②④ C.②③ D.③④
    8.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    9.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是

    A.点A和点C B.点B和点D
    C.点A和点D D.点B和点C
    10.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .
    12.不等式组的解是____.
    13.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
    14.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.

    15.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.

    16.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).

    三、解答题(共8题,共72分)
    17.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
    (1)写出抛物线的函数表达式;
    (2)判断△ABC的形状,并证明你的结论;
    (3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.

    18.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    19.(8分)已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
    20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

    (1)求反比例函数的解析式;
    (2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
    21.(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.

    22.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
    分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
    23.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
    (1)求线段AQ的长;(用含t的代数式表示)
    (2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
    (3)设△APQ的面积为S,求S与t的函数关系式;
    (4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.

    24.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据题意,在实验中有3个阶段,
    ①、铁块在液面以下,液面得高度不变;
    ②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
    ③、铁块在液面以上,完全露出时,液面高度又维持不变;
    分析可得,B符合描述;
    故选B.
    2、C
    【解析】
    试题分析:由得,,即是判断函数与函数的图象的交点情况.



    因为函数与函数的图象只有一个交点
    所以方程只有一个实数根
    故选C.
    考点:函数的图象
    点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
    3、B
    【解析】
    设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
    则总共送出的图书为x(x−1);
    又知实际互赠了210本图书,
    则x(x−1)=210.
    故选:B.
    4、A
    【解析】
    连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
    【详解】
    连接BD,
    ∵四边形ABCD为矩形,
    ∴BD过圆心O,
    ∵∠BDC=∠BPC(圆周角定理)
    ∴cos∠BDC=cos∠BPC
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵=,
    ∴设DC为x,
    则BC为2x,
    ∴BD===x,
    ∴cos∠BDC===,
    ∵cos∠BDC=cos∠BPC,
    ∴cos∠BPC=.
    故答案选A.

    【点睛】
    本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
    5、C
    【解析】
    俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
    【详解】
    A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
    B.几何体的俯视图是长方形,故本选项不符合题意,
    C.三棱柱的俯视图是三角形,故本选项符合题意,
    D.圆台的俯视图是圆环,故本选项不符合题意,
    故选C.
    【点睛】
    此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
    6、C
    【解析】
    根据轴对称和中心对称的定义去判断即可得出正确答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故此选项错误.
    故选:C.
    【点睛】
    本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
    7、D
    【解析】
    试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
    解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
    根据客车数列方程,应该为,②错误,③正确;
    所以正确的是③④.
    故选D.
    考点:由实际问题抽象出一元一次方程.
    8、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    9、C
    【解析】
    根据相反数的定义进行解答即可.
    【详解】
    解:由A表示-2,B表示-1,C表示0.75,D表示2.
    根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
    故答案为C.
    【点睛】
    本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
    10、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.
    考点:等腰三角形的性质;三角形三边关系.
    12、
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①,得x>1,
    解不等式②,得x≤1,
    所以不等式组的解集是1<x≤1,
    故答案是:1<x≤1.
    【点睛】
    考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    13、
    【解析】
    当k−1=0,即k=1时,原方程为−4x−5=0,
    解得:x=−,
    ∴k=1符合题意;
    当k−1≠0,即k≠1时,有,
    解得:k⩾且k≠1.
    综上可得:k的取值范围为k⩾.
    故答案为k⩾.
    14、.
    【解析】
    由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
    【详解】
    ∵点B的坐标为(2,3),点C为OB的中点,
    ∴C点坐标为(1,1.5),
    ∴k=1×1.5=1.5,即反比例函数解析式为y=,
    ∴S△OAD=×1.5=.
    故答案为:.
    【点睛】
    本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
    15、(2,0)
    【解析】
    根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标
    【详解】
    如图所示,

    ∵直线y=x与双曲线y=交于A,B两点,OA=2,
    ∴AB=2AO=4,
    又∵∠ACB=90°,
    ∴Rt△ABC中,OC=AB=2,
    又∵点C在x轴的正半轴上,
    ∴C(2,0),
    故答案为(2,0).
    【点睛】
    本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.
    16、
    【解析】
    【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
    【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
    =S扇形ABA′
    =
    =,
    故答案为.
    【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
    【解析】
    (1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
    (2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
    (3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
    【详解】
    解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
    把A(8,9),B(0,1)代入y=x2+bx+c得,
    解得,
    ∴抛物线解析式为y=x2﹣7x+1;
    故答案为y=x2﹣7x+1;
    (2)△ABC为直角三角形.理由如下:
    当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
    作AM⊥y轴于M,CN⊥y轴于N,如图,
    ∵B(0,1),A(8,9),C(1,﹣5),
    ∴BM=AM=8,BN=CN=1,
    ∴△ABM和△BNC都是等腰直角三角形,
    ∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
    ∴∠ABC=90°,
    ∴△ABC为直角三角形;
    (3)∵AB=8,BN=1,
    ∴AC=10,
    ∴Rt△ABC的内切圆的半径=,
    设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
    ∵I为△ABC的内心,
    ∴AI、BI为角平分线,
    ∴BI⊥y轴,
    而AI⊥PQ,
    ∴PQ为△ABC的外角平分线,
    易得y轴为△ABC的外角平分线,
    ∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
    它们到直线AB、BC、AC距离相等,
    BI=×2=4,
    而BI⊥y轴,
    ∴I(4,1),
    设直线AI的解析式为y=kx+n,
    则,
    解得,
    ∴直线AI的解析式为y=2x﹣7,
    当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
    设直线AP的解析式为y=﹣x+p,
    把A(8,9)代入得﹣4+n=9,解得n=13,
    ∴直线AP的解析式为y=﹣x+13,
    当y=1时,﹣x+13=1,则P(24,1)
    当x=0时,y=﹣x+13=13,则Q(0,13),
    综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
    18、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    19、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
    20、(1);(2)点P的坐标是(0,4)或(0,-4).
    【解析】
    (1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.
    (2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
    【详解】
    (1)∵B(4,2),四边形OABC是矩形,
    ∴OA=BC=2.
    将y=2代入3得:x=2,∴M(2,2).
    把M的坐标代入得:k=4,
    ∴反比例函数的解析式是;
    (2).
    ∵△OPM的面积与四边形BMON的面积相等,
    ∴.
    ∵AM=2,
    ∴OP=4.
    ∴点P的坐标是(0,4)或(0,-4).
    21、详见解析.
    【解析】
    先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=DC,
    ∵E、F分别是AB、BC边的中点,
    ∴AE=ED=CF=DF.
    又∠D=∠D,
    ∴△ADF≌△CDE(SAS).
    ∴∠DAF=∠DCE,∠AFD=∠CED.
    ∴∠AEG=∠CFG.
    在△AEG和△CFG中

    ∴△AEG≌△CFG(ASA).
    ∴AG=CG.
    【点睛】
    本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
    22、 (1)抛物线的解析式是.直线AB的解析式是.
    (2) .
    (3)P点的横坐标是或.
    【解析】
    (1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
    (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
    当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
    (3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
    【详解】
    解:(1)把A(3,0)B(0,-3)代入,得
    解得
    所以抛物线的解析式是.
    设直线AB的解析式是,把A(3,0)B(0,)代入,得
    解得
    所以直线AB的解析式是.
    (2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
    ==.
    (3)若存在,则可能是:
    ①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
    ②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
    ③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
    ①,所以P点的横坐标是.
    所以P点的横坐标是或.
    23、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
    【解析】
    分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
    (3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
    详解:(1)如图1,

    Rt△ABC中,∠A=30°,AB=8,
    ∴BC=AB=4,
    ∴AC=,
    由题意得:CQ=t,
    ∴AQ=4﹣t;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
    ①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
    ②当PQ⊥AB时,如图2,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,
    ∴,
    t=;
    ③当PQ⊥AC时,如图3,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,

    t=;
    综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
    (3)分两种情况:
    ①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,

    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
    ②当P在边BC上时,即1<t≤3,如图5,

    由题意得:PB=2(t﹣1),
    ∴PC=4﹣2(t﹣1)=﹣2t+6,
    ∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
    综上所述,S与t的函数关系式为:S=;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
    ①当P在边AB上时,如图6,

    AP=PQ,作PG⊥AC于G,则AG=GQ,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴AG=4t,
    由AQ=2AG得:4﹣t=8t,t=,
    ②当P在边AC上时,如图7,AQ=PQ,

    Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
    ∴,
    t=或﹣(舍),
    综上所述,t的值为或.
    点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
    24、
    【解析】
    原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;
    【详解】
    解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab
    =a2+b2,
    当a=1、b=﹣时,
    原式=12+(﹣)2
    =1+
    =.
    【点睛】
    考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.

    相关试卷

    陕西省宝鸡凤翔县联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份陕西省宝鸡凤翔县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。

    河北省沧州青县联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份河北省沧州青县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了计算,一个正比例函数的图象过点等内容,欢迎下载使用。

    安徽省舒城县联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份安徽省舒城县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,tan30°的值为,-4的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map