广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )
A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)
2.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )
A.小亮骑自行车的平均速度是12 km/h
B.妈妈比小亮提前0.5 h到达姥姥家
C.妈妈在距家12 km处追上小亮
D.9:30妈妈追上小亮
3.下列事件中,必然事件是( )
A.若ab=0,则a=0
B.若|a|=4,则a=±4
C.一个多边形的内角和为1000°
D.若两直线被第三条直线所截,则同位角相等
4.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
5.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )
A.(6,3) B.(6,4) C.(7,4) D.(8,4)
6.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=( )
A.100° B.50° C.70° D.130°
7.下列运算正确的是( )
A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b6
8.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A. B.2 C. D.
9.若分式在实数范围内有意义,则实数的取值范围是( )
A. B. C. D.
10.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度( )
A.1 B.5 C.1或5 D.2或4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.
12.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).
13.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
14.若|a|=2016,则a=___________.
15.若代数式的值不小于代数式的值,则x的取值范围是_____.
16.因式分解:x2y-4y3=________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:,其中与2,3构成的三边,且为整数.
18.(8分)计算:()﹣2﹣+(﹣2)0+|2﹣|
19.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.
20.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?
21.(8分)如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
22.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
23.(12分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
x/元 | … | 15 | 20 | 25 | … |
y/件 | … | 25 | 20 | 15 | … |
已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
24.在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.
【详解】
设反比例函数y=(k为常数,k≠0),
∵反比例函数的图象经过点(-2,3),
∴k=-2×3=-6,
而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,
∴点(2,-3)在反比例函数y=- 的图象上.
故选A.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
2、D
【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
【详解】
解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
∴小亮走的路程为:1×12=12km,
∴妈妈在距家12km出追上小亮,故正确;
D、由图象可知,当t=9时,妈妈追上小亮,故错误;
故选D.
【点睛】
本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
3、B
【解析】
直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.
【详解】
解:A、若ab=0,则a=0,是随机事件,故此选项错误;
B、若|a|=4,则a=±4,是必然事件,故此选项正确;
C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;
D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;
故选:B.
【点睛】
此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.
4、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
5、C
【解析】
根据题意知小李所对应的坐标是(7,4).
故选C.
6、A
【解析】
根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.
【详解】
四边形ABCE内接于⊙O,
,
由圆周角定理可得,,
故选:A.
【点睛】
本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
7、D
【解析】
根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:
A、a2•a4=a6,故此选项错误;
B、2a2+a2=3a2,故此选项错误;
C、a6÷a2=a4,故此选项错误;
D、(ab2)3=a3b6,故此选项正确..
故选D.
考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.
8、A
【解析】
分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.
详解:
连接AC,
由网格特点和勾股定理可知,
AC=,
AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.
点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
9、D
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由分式有意义的条件可知:,
,
故选:.
【点睛】
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
10、C
【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
【详解】
∵点C是劣弧AB的中点,
∴OC垂直平分AB,
∴DA=DB=3,
∴OD=,
若△POC为直角三角形,只能是∠OPC=90°,
则△POD∽△CPD,
∴,
∴PD2=4×1=4,
∴PD=2,
∴PB=3﹣2=1,
根据对称性得,
当P在OC的左侧时,PB=3+2=5,
∴PB的长度为1或5.
故选C.
【点睛】
考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.
【详解】
如图,连接并延长交于G,连接并延长交于H,
∵点E、F分别是和的重心,
∴,,,,
∵,
∴,
∵,,
∴,
∵,
∴,
∴,
∴,
故答案为:4
【点睛】
本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
12、.
【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
【详解】
(cm2).
故答案为.
考点:1、扇形的面积公式;2、两圆相外切的性质.
13、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.
【详解】
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
14、±1
【解析】
试题分析:根据零指数幂的性质(),可知|a|=1,座椅可知a=±1.
15、x≥
【解析】
根据题意列出不等式,依据解不等式得基本步骤求解可得.
【详解】
解:根据题意,得:,
6(3x﹣1)≥5(1﹣5x),
18x﹣6≥5﹣25x,
18x+25x≥5+6,
43x≥11,
x≥,
故答案为x≥.
【点睛】
本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.
16、y(x++2y)(x-2y)
【解析】
首先提公因式,再利用平方差进行分解即可.
【详解】
原式.
故答案是:y(x+2y)(x-2y).
【点睛】
考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
三、解答题(共8题,共72分)
17、1
【解析】
试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.
试题解析:原式= ,
∵a与2、3构成△ABC的三边,
∴3−2<a<3+2,即1<a<5,
又∵a为整数,
∴a=2或3或4,
∵当x=2或3时,原分式无意义,应舍去,
∴当a=4时,原式==1
18、2
【解析】
直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
【详解】
解:原式=4﹣3+1+2﹣2=2.
【点睛】
本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.
19、(1)A(﹣1,﹣6);(1)见解析
【解析】
试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.
试题解析:
解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);
(1)如图,△A1B1C1为所作.
20、(2)证明见试题解析;(2).
【解析】
(2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;
(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.
【详解】
解:(2)过点O作OM⊥AB,垂足是M.
∵⊙O与AC相切于点D,
∴OD⊥AC,
∴∠ADO=∠AMO=90°.
∵△ABC是等边三角形,
∴∠DAO=∠MAO,
∴OM=OD,
∴AB与⊙O相切;
(2)过点O作ON⊥BE,垂足是N,连接OF.
∵O是BC的中点,
∴OB=2.在直角△OBM中,∠MBO=60°,
∴∠MOB=30°, BM=OB=2,
OM=BM =,
∵BE⊥AB,
∴四边形OMBN是矩形,
∴ON=BM=2,BN=OM=.
∵OF=OM=,由勾股定理得NF=.
∴BF=BN+NF=.
考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.
21、(1);;(2)或;
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.
【详解】
(1) 过点,
,
反比例函数的解析式为;
点在 上,
,
,
一次函数过点,
,
解得:.
一次函数解析式为;
(2)由图可知,当或时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
22、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
23、();()此时每天利润为元.
【解析】
试题分析:(1) 根据题意用待定系数法即可得解;
(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
试题解析:()设,将,和,代入,得:,解得:,
∴;
()将代入()中函数表达式得:
,
∴利润(元),
答:此时每天利润为元.
24、
【解析】
试题分析:
由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.
试题解析:
∵四边形ABCD是矩形,
∴OA=OB=OD,∠BAD=90°,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OB=OA=2,
∴BD=2OB=4,
在Rt△ABD中
∴AD===.
浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
2022届濉溪县重点达标名校中考数学考前最后一卷含解析: 这是一份2022届濉溪县重点达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了济南市某天的气温,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析: 这是一份2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,有下列四种说法等内容,欢迎下载使用。