广东省宝塔实验重点名校2022年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
2.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
3.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
A. B. C. D.
4.下列图形不是正方体展开图的是( )
A. B.
C. D.
5.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
6.如图是一个几何体的主视图和俯视图,则这个几何体是( )
A.三棱柱 B.正方体 C.三棱锥 D.长方体
7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
8.在3,0,-2,- 四个数中,最小的数是( )
A.3 B.0 C.-2 D.-
9.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为( )
A.向下平移3个单位 B.向上平移3个单位
C.向左平移4个单位 D.向右平移4个单位
10.下列运算正确的是( )
A. B. =﹣3 C.a•a2=a2 D.(2a3)2=4a6
二、填空题(共7小题,每小题3分,满分21分)
11.方程的解是__________.
12.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
13.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).
14.当a<0,b>0时.化简:=_____.
15.方程3x(x-1)=2(x-1)的根是
16.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
17.计算:﹣|﹣2|+()﹣1=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)
19.(5分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.
求证:BD=CD.
20.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
21.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
22.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
23.(12分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
24.(14分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
2、A
【解析】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD=OC=2,
∴AC=2CD=4.
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
3、C
【解析】
两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.
【详解】
直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;
直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;
因此以两条直线l1,l2的交点坐标为解的方程组是:.
故选C.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
4、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
5、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
6、A
【解析】
【分析】根据三视图的知识使用排除法即可求得答案.
【详解】如图,由主视图为三角形,排除了B、D,
由俯视图为长方形,可排除C,
故选A.
【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.
7、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
8、C
【解析】
根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,
所以,
所以最小的数是,
故选C.
【点睛】
此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.
9、A
【解析】
将抛物线平移,使平移后所得抛物线经过原点,
若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
故选A.
10、D
【解析】
试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;
B.,故原选项错误;
C. ,故原选项错误;
D. ,故该选项正确.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
根据解分式方程的步骤依次计算可得.
【详解】
解:去分母,得:,
解得:,
当时,,
所以是原分式方程的解,
故答案为:.
【点睛】
本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
12、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
13、1.
【解析】
设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.
故答案为1.
14、
【解析】
分析:按照二次根式的相关运算法则和性质进行计算即可.
详解:
∵,
∴.
故答案为:.
点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
15、x1=1,x2=-.
【解析】
试题解析:3x(x-1)=2(x-1)
3x(x-1)-2 (x-1) =0
(3x-2)(x-1)=0
3x-2=0,x-1=0
解得:x1=1,x2=-.
考点:解一元二次方程---因式分解法.
16、或
【解析】
分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
【详解】
解:当0°<x°≤90°时,如图所示:连接OC,
由圆周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所对的劣弧长=,
当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
故答案为:或.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
17、﹣1
【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.
【详解】
原式= -2 -2+3= -1
【点睛】
本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
三、解答题(共7小题,满分69分)
18、 (10-4)米
【解析】
延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
【详解】
解:如图,延长OC,AB交于点P.
∵∠ABC=120°,
∴∠PBC=60°,
∵∠OCB=∠A=90°,
∴∠P=30°,
∵AD=20米,
∴OA=AD=10米,
∵BC=2米,
∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
∵∠P=∠P,∠PCB=∠A=90°,
∴△PCB∽△PAO,
∴,
∴PA===米,
∴AB=PA﹣PB=()米.
答:路灯的灯柱AB高应该设计为()米.
19、证明见解析
【解析】
根据AB=AC,得到,于是得到∠ADB=∠ADC,根据AD是⊙O的直径,得到∠B=∠C=90°,根据三角形的内角和定理得到∠BAD=∠DAC,于是得到结论.
【详解】
证明:∵AB=AC,
∴,
∴∠ADB=∠ADC,
∵AD是⊙O的直径,
∴∠B=∠C=90°,
∴∠BAD=∠DAC,
∴,
∴BD=CD.
【点睛】
本题考查了圆周角定理,熟记圆周角定理是解题的关键.
20、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
21、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
22、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
23、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.
【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)由题意可得:p≤q,进而得出x的取值范围;
(3)①利用顶点式求出函数最值得出答案;
②利用二次函数的增减性得出答案即可.
【详解】
(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;
(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵当x时,y随x的增加而增加.
又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.
【点睛】
本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.
24、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
广东省佛山市南海区桂城街道重点名校2022年中考试题猜想数学试卷含解析: 这是一份广东省佛山市南海区桂城街道重点名校2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年广东省宝塔实验重点达标名校中考适应性考试数学试题含解析: 这是一份2022年广东省宝塔实验重点达标名校中考适应性考试数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,二元一次方程组的解是,已知,代数式的值为等内容,欢迎下载使用。