终身会员
搜索
    上传资料 赚现金
    广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析
    立即下载
    加入资料篮
    广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析01
    广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析02
    广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析

    展开
    这是一份广西柳州市城中学区文华中学2022年中考猜题数学试卷含解析,共23页。试卷主要包含了计算6m3÷的结果是,计算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )

    A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
    C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
    2.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )

    A.30° B.36° C.54° D.72°
    3.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    4.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(   )
    A.第一象限
    B.第二象限
    C.第三象限
    D.第四象限
    5.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为(  )

    A. B. C. D.1
    6.等腰三角形的一个外角是100°,则它的顶角的度数为(  )
    A.80° B.80°或50° C.20° D.80°或20°
    7.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为(  )
    A.1 B.2 C.3 D.4
    8.计算(﹣ab2)3的结果是(  )
    A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
    9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是(  )

    A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
    10.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )

    A.3.5 B.4 C.7 D.14
    11.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    12.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )

    A.45° B.50° C.55° D.60°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)

    14.若分式的值为零,则x的值为________.
    15.分解因式:3a2﹣12=___.
    16.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    17.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    18.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.

    种产品
    种产品
    成本(万元件)
    2
    5
    利润(万元件)
    1
    3
    (1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
    (2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?
    20.(6分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
    ①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
    ②若BC=DE=4,当AE取最大值时,求AF的值.

    21.(6分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
    (1)判断点M是否在直线y=﹣x+4上,并说明理由;
    (2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
    (3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.

    22.(8分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
    (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
    (2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
    23.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
    (参考数据:sin15°=,cos15°=,tan15°=2﹣)
    (1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
    (2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
    (3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.

    24.(10分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
    (1)求∠AEC的度数;
    (2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.

    25.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
    求,,的值;求四边形的面积.
    26.(12分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
    销售单价(元)
    x
    销售量y(件)
        
    销售玩具获得利润w(元)
        
    (2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
    27.(12分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程有一个根的平方等于4,求m的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题解析:A、∵4+10+8+6+2=30(人),
    ∴参加本次植树活动共有30人,结论A正确;
    B、∵10>8>6>4>2,
    ∴每人植树量的众数是4棵,结论B正确;
    C、∵共有30个数,第15、16个数为5,
    ∴每人植树量的中位数是5棵,结论C正确;
    D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
    ∴每人植树量的平均数约是4.73棵,结论D不正确.
    故选D.
    考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
    2、B
    【解析】
    在等腰三角形△ABE中,求出∠A的度数即可解决问题.
    【详解】
    解:在正五边形ABCDE中,∠A=×(5-2)×180=108°

    又知△ABE是等腰三角形,
    ∴AB=AE,
    ∴∠ABE=(180°-108°)=36°.
    故选B.
    【点睛】
    本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
    3、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    4、D
    【解析】
    根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
    【详解】
    ∵直线y=ax+b(a≠0)经过第一,二,四象限,
    ∴a<0,b>0,
    ∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
    故选D.
    【点睛】
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    5、A
    【解析】
    首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
    【详解】
    取AB的中点M,连接OM,

    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,OB=OD,
    ∴OM∥AD∥BC,OM=AD=×3=,
    ∴△EFB∽△EOM,
    ∴,
    ∵AB=5,BE=AB,
    ∴BE=2,BM=,
    ∴EM=+2=,
    ∴,
    ∴BF=,
    故选A.
    【点睛】
    此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
    6、D
    【解析】
    根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.
    【详解】
    ∵等腰三角形的一个外角是100°,
    ∴与这个外角相邻的内角为180°−100°=80°,
    当80°为底角时,顶角为180°-160°=20°,
    ∴该等腰三角形的顶角是80°或20°.
    故答案选:D.
    【点睛】
    本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.
    7、C
    【解析】
    先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
    【详解】
    去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
    方程①的根的情况有两种:
    (1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
    解得a=.
    当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
    (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
    (i)当x=1时,代入①式得3﹣a=1,即a=3.
    当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
    而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
    (ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
    当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
    x1是增根,故x=﹣为方程的唯一实根;
    因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
    故选C.
    【点睛】
    考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
    8、D
    【解析】
    根据积的乘方与幂的乘方计算可得.
    【详解】
    解:(﹣ab2)3=﹣a3b6,
    故选D.
    【点睛】
    本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
    法则.
    9、C
    【解析】
    利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
    【详解】
    解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
    ∴a+b<1,ab<1,a﹣b<1,a÷b<1.
    故选:C.
    10、A
    【解析】
    根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
    【详解】
    解:∵菱形ABCD的周长为28,
    ∴AB=28÷4=7,OB=OD,
    ∵E为AD边中点,
    ∴OE是△ABD的中位线,
    ∴OE=AB=×7=3.1.
    故选:A.
    【点睛】
    本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    11、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    12、B
    【解析】
    先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
    【详解】
    ∵四边形ABCD内接于⊙O,∠ABC=105°,
    ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
    ∵,∠BAC=25°,
    ∴∠DCE=∠BAC=25°,
    ∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
    【点睛】
    本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB
    【解析】
    试题分析:∵∠DAC=∠CAB
    ∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.
    考点:1.相似三角形的判定;2.开放型.
    14、1
    【解析】
    试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
    考点:分式的值为零的条件.
    15、3(a+2)(a﹣2)
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
    3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
    16、1
    【解析】
    设点P(m,m+2),
    ∵OP=,
    ∴ =,
    解得m1=1,m2=﹣1(不合题意舍去),
    ∴点P(1,1),
    ∴1=,
    解得k=1.
    点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.
    17、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.
    18、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
    【解析】
    (1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;
    (2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.
    【详解】
    解:(1)设生产种产品件,则生产种产品件,
    依题意得:,
    解得: ,
    则,
    答:生产产品8件,生产产品2件;
    (2)设生产产品件,则生产产品件

    解得:.
    因为为正整数,故或3;
    答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
    【点睛】
    此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
    20、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
    【解析】
    (1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    (2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    ②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
    【详解】
    (1)BG=AE.
    理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
    ∴AD⊥BC,BD=CD,
    ∴∠ADB=∠ADC=90°.
    ∵四边形DEFG是正方形,
    ∴DE=DG.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△ADE≌△BDG(SAS),
    ∴BG=AE.
    故答案为BG=AE;
    (2)①成立BG=AE.
    理由:如图2,连接AD,

    ∵在Rt△BAC中,D为斜边BC中点,
    ∴AD=BD,AD⊥BC,
    ∴∠ADG+∠GDB=90°.         
    ∵四边形EFGD为正方形,
    ∴DE=DG,且∠GDE=90°,
    ∴∠ADG+∠ADE=90°,
    ∴∠BDG=∠ADE.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△BDG≌△ADE(SAS),
    ∴BG=AE;                           
    ②∵BG=AE,
    ∴当BG取得最大值时,AE取得最大值.
    如图3,当旋转角为270°时,BG=AE.
    ∵BC=DE=4,
    ∴BG=2+4=6.
    ∴AE=6.
    在Rt△AEF中,由勾股定理,得
    AF= =,
    ∴AF=2 .

    【点睛】
    本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
    21、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
    【解析】
    (1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
    (2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
    (1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
    【详解】
    (1)点M不在直线y=﹣x+4上,理由如下:
    ∵当x=1时,y=﹣1+4=1≠2,
    ∴点M(1,2)不在直线y=﹣x+4上;
    (2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
    ①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
    ∵点M1(1,﹣2)在直线y=﹣x+4+b上,
    ∴﹣2=﹣1+4+b,
    ∴b=﹣1,
    即平移的距离为1;
    ②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
    ∵点M2(﹣1,2)在直线y=﹣x+4+b上,
    ∴2=1+4+b,
    ∴b=﹣2,
    即平移的距离为2.
    综上所述,平移的距离为1或2;
    (1)∵直线y=kx+b经过点M(1,2),
    ∴2=1k+b,b=2﹣1k.
    ∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
    ∴y=kn+b=﹣n+4,
    ∴kn+2﹣1k=﹣n+4,
    ∴k=.
    ∵y=kx+b随x的增大而增大,
    ∴k>0,即>0,
    ∴①,或②,
    不等式组①无解,不等式组②的解集为2<n<1.
    ∴n的取值范围是2<n<1.
    故答案为2<n<1.
    【点睛】
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
    22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【解析】
    (1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
    (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
    【详解】
    (1)设购进甲种商品x件,购进乙商品y件,
    根据题意得:

    解得:,
    答:商店购进甲种商品40件,购进乙种商品60件;
    (2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
    根据题意列得:

    解得:20≤a≤22,
    ∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
    ∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
    答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【点睛】
    此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
    23、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
    【解析】
    (1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
    (2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
    (3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
    【详解】
    解:(1)EF∥BD.
    证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
    ∴DE=BF,
    又∵DE∥BF,
    ∴四边形DBFE是平行四边形,
    ∴EF∥DB;
    (2)①AE=AM.
    ∵EF∥BD,
    ∴∠F=∠ABD=45°,
    ∴MB=BF=DE,
    ∵正方形ABCD,
    ∴∠ADC=∠ABC=90°,AB=AD,
    ∴△ADE≌△ABM,
    ∴AE=AM;
    ②△AEM能为等边三角形.
    若△AEM是等边三角形,则∠EAM=60°,
    ∵△ADE≌△ABM,
    ∴∠DAE=∠BAM=15°,
    ∵tan∠DAE=,AD=8,
    ∴2﹣=,
    ∴DE=16﹣8,
    即当DE=16﹣8时,△AEM是等边三角形;
    (3)△ANF的面积不变.
    设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,

    ∵CD∥AB,
    ∴△DEN∽△BNA,
    ∴=,
    ∴,
    ∴PN=,
    ∴S△ANF=AF×PN=×(x+8)×=32,
    即△ANF的面积不变.
    【点睛】
    本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
    24、(1)90°;(1)AE1+EB1=AC1,证明见解析.
    【解析】
    (1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
    (1)根据勾股定理解答.
    【详解】
    解:(1)∵点D是BC边的中点,DE⊥BC,
    ∴DE是线段BC的垂直平分线,
    ∴EB=EC,
    ∴∠ECB=∠B=45°,
    ∴∠AEC=∠ECB+∠B=90°;
    (1)AE1+EB1=AC1.
    ∵∠AEC=90°,
    ∴AE1+EC1=AC1,
    ∵EB=EC,
    ∴AE1+EB1=AC1.
    【点睛】
    本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    25、(1),,.(2)6
    【解析】
    (1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
    【详解】
    解:(1)∵点在上,
    ∴,
    ∵点在上,且,
    ∴.
    ∵过,两点,
    ∴,
    解得,
    ∴,,.
    (2)如图,延长,交于点,则.
    ∵轴,轴,
    ∴,,
    ∴,,



    .
    ∴四边形的面积为6.

    【点睛】
    考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
    26、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
    【解析】
    (1)由销售单价每涨1元,就会少售出10件玩具得
    销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
    (2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
    (3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
    【详解】
    解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
    销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
    故答案为: 1000﹣x,﹣10x2+1300x﹣1.
    (2)﹣10x2+1300x﹣1=10000
    解之得:x1=50,x2=80
    答:玩具销售单价为50元或80元时,可获得10000元销售利润.
    (3)根据题意得,
    解得:44≤x≤46 .
    w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
    ∵a=﹣10<0,对称轴x=65,
    ∴当44≤x≤46时,y随x增大而增大.
    ∴当x=46时,W最大值=8640(元).
    答:商场销售该品牌玩具获得的最大利润为8640元.
    27、(1)证明见解析;(2)m 的值为1或﹣2.
    【解析】
    (1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
    【详解】
    (1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
    ∴无论实数 m 取何值,方程总有两个实数根;
    (2)解:∵方程有一个根的平方等于 2,
    ∴x=±2 是原方程的根,
    当 x=2 时,2﹣2(m+3)+m+2=1.
    解得m=1;
    当 x=﹣2 时,2+2(m+3)+m+2=1,
    解得m=﹣2.
    综上所述,m 的值为 1 或﹣2.
    【点睛】
    本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.

    相关试卷

    广西柳州市城中学区文华中学2023-2024学年数学九上期末综合测试试题含答案: 这是一份广西柳州市城中学区文华中学2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是必然事件的是,函数y=kx﹣k,抛物线的对称轴为等内容,欢迎下载使用。

    2023-2024学年广西柳州市城中学区文华中学数学八上期末联考模拟试题含答案: 这是一份2023-2024学年广西柳州市城中学区文华中学数学八上期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,点A等内容,欢迎下载使用。

    广西柳州市城中学区文华中学2022-2023学年数学七下期末预测试题含答案: 这是一份广西柳州市城中学区文华中学2022-2023学年数学七下期末预测试题含答案,共6页。试卷主要包含了答题时请按要求用笔,下列命题中是真命题的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map