广西壮族自治区崇左市2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
2.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A. B.
C. D.
3.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
4.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
如果令
其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是( )
A.同意第1号或者第2号同学当选的人数
B.同时同意第1号和第2号同学当选的人数
C.不同意第1号或者第2号同学当选的人数
D.不同意第1号和第2号同学当选的人数
5.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
6.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
7.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是( )
A. B.
C. D.
8.cos30°=( )
A. B. C. D.
9.如图,在平行四边形ABCD中,都不一定 成立的是( )
①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.
A.①和④ B.②和③ C.③和④ D.②和④
10.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )
A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
二、填空题(共7小题,每小题3分,满分21分)
11.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
12.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.
13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.
14.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为 .
15.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.
16.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.
17.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.
(1)求二次函数的表达式;
(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;
(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.
19.(5分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
20.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
(1)如图,若m=﹣,n=,点B的纵坐标为,
①求k的值;
②作线段CD,使CD∥AB且CD=AB,并简述作法;
(2)若四边形ABCD为矩形,A的坐标为(1,5),
①求m,n的值;
②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是 .
21.(10分)解不等式组,并将解集在数轴上表示出来.
22.(10分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
23.(12分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
24.(14分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h)
与A地的距离
0.5
1.8
_____
甲与A地的距离(km)
5
20
乙与A地的距离(km)
0
12
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
2、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
3、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
4、B
【解析】
先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
【详解】
第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
故选B.
【点睛】
本题考查了推理应用题,题目比较新颖,是基础题.
5、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
解答:解:A、错误,例如对角线互相垂直的等腰梯形;
B、错误,等腰梯形是轴对称图形不是中心对称图形;
C、正确,符合切线的性质;
D、错误,垂直于同一直线的两条直线平行.
故选C.
6、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
7、C
【解析】
根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.
【详解】
解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;
B、由一次函数图象可知,k>0,∴﹣k<0,-=>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;
C、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;
D、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;
故选:C.
【点睛】
本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.
8、C
【解析】
直接根据特殊角的锐角三角函数值求解即可.
【详解】
故选C.
【点睛】
考点:特殊角的锐角三角函数
点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
9、D
【解析】
∵四边形ABCD是平行四边形,
∴AO=CO,故①成立;
AD∥BC,故③成立;
利用排除法可得②与④不一定成立,
∵当四边形是菱形时,②和④成立.
故选D.
10、C
【解析】
【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
【详解】设每个小箱子装洗衣粉x千克,由题意得:
4x+2=36,
解得:x=8.5,
即每个小箱子装洗衣粉8.5千克,
故选C.
【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
两个单项式合并成一个单项式,说明这两个单项式为同类项.
【详解】
解:由同类项的定义可知,
a=2,b=1,
∴a+b=1.
故答案为:1.
【点睛】
本题考查的知识点为:同类项中相同字母的指数是相同的.
12、π
【解析】
试题分析:∵,∴S阴影===.故答案为.
考点:旋转的性质;扇形面积的计算.
13、5
【解析】
试题分析:利用根与系数的关系进行求解即可.
解:∵x1,x2是方程x2-3x+2=0的两根,
∴x1+ x2=,x1x2=,
∴x1+x2+x1x2=3+2=5.
故答案为:5.
14、2.
【解析】
试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.
考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.
15、
【解析】
由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
【详解】
设MN与OP交于点E,
∵点O、P的距离为4,
∴OP=4
∵折叠
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=
在Rt△ONE中,NE=
∴MN=ME-NE=2-
故答案为2-
【点睛】
本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
16、(50﹣).
【解析】
过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.
【详解】
解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,
则AB=MN,AM=BN.
在直角△ACM,∵∠ACM=45°,AM=50m,
∴CM=AM=50m.
∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
∴CN===(m),
∴MN=CM−CN=50−(m).
则AB=MN=(50−)m.
故答案是:(50−).
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
17、2.5×1
【解析】
先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
【详解】
1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
故答案为2.5×1.
【点睛】
本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
三、解答题(共7小题,满分69分)
18、 (1) y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.
【解析】
(1)将代入,列方程组求出b、c的值即可;
(2)连接PD,作轴交于点G,求出直线的解析式为,设
,则,
,,
当时,S有最大值;
(3)过点P作轴,设,则,
,
根据,列出关于x的方程,解之即可.
【详解】
解:(1)将、代入,
,
∴二次函数的表达式;
(2)连接,作轴交于点,如图所示.
在中,
令y=0,得,
∴直线AD的解析式为.
设,则,
,
∴.
,
∴当时,S有最大值.
(3)过点P作轴,设,则,,
,
即
,
当点P在y轴右侧时,,
,或,
(舍去)或(舍去),
当点P在y轴左侧时,x<0,
,或,
(舍去),或(舍去),
综上所述,存在点F,使与互余点P的横坐标为或或或.
【点睛】
本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.
19、 (1),不可能;(2)不存在;(3)1或11.
【解析】
试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
试题解析:(1)由题意设,由表中数据,得
解得∴.
由题意,若,则.
∵x>0,∴.
∴不可能.
(2)将n=1,x=120代入,得
120=2-2k+9k+27.解得k=13.
将n=2,x=100代入也符合.
∴k=13.
由题意,得18=6+,求得x=50.
∴50=,即.
∵,∴方程无实数根.
∴不存在.
(3)第m个月的利润为w==;
∴第(m+1)个月的利润为
W′=.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.
考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.
20、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
【解析】
(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
【详解】
(1)①∵,,
∴直线的解析式为,
∵点B在直线上,纵坐标为,
∴,
解得x=2
∴,
∴;
②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①∵点在上,
∴k=5,
∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∴A,B关于直线y=x对称,
∴,
则有:,解得;
②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.
∵A,C关于原点对称,,
∴,
∵,
当时,
∴,
∴,
∴a=5或(舍弃),
当点P在点A的左侧时,同法可得a=1,
∴满足条件的a的范围为或.
【点睛】
本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
21、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x>﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图
,
原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
22、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
23、 (1)抛物线的解析式是.直线AB的解析式是.
(2) .
(3)P点的横坐标是或.
【解析】
(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
【详解】
解:(1)把A(3,0)B(0,-3)代入,得
解得
所以抛物线的解析式是.
设直线AB的解析式是,把A(3,0)B(0,)代入,得
解得
所以直线AB的解析式是.
(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
==.
(3)若存在,则可能是:
①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
①,所以P点的横坐标是.
所以P点的横坐标是或.
24、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
【解析】
(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
(Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
【详解】
(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
此时乙行驶的时间是2﹣1.5=0. 5(时),
所以乙离开A的距离是40×0.5=20(km),
故填写下表:
(Ⅱ)由题意知:
y1=10x(0≤x≤1.5),
y2=;
(Ⅲ)根据题意,得,
当0≤x≤1.5时,由10x=12,得x=1.2,
当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
因此,当y=12时,x的值是1.2或1.6.
【点睛】
本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.
邗江实验2021-2022学年中考数学押题试卷含解析: 这是一份邗江实验2021-2022学年中考数学押题试卷含解析,共18页。
广西崇左市2022年中考押题数学预测卷含解析: 这是一份广西崇左市2022年中考押题数学预测卷含解析,共17页。试卷主要包含了如下图所示,该几何体的俯视图是等内容,欢迎下载使用。
广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析: 这是一份广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,的相反数是等内容,欢迎下载使用。